Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.2
Avalie o limite do numerador.
Etapa 1.2.1
Avalie o limite.
Etapa 1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.2.1.2
Mova o limite para o expoente.
Etapa 1.2.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.2.2
Avalie o limite de substituindo por .
Etapa 1.2.3
Simplifique a resposta.
Etapa 1.2.3.1
Simplifique cada termo.
Etapa 1.2.3.1.1
Qualquer coisa elevada a é .
Etapa 1.2.3.1.2
Multiplique por .
Etapa 1.2.3.2
Subtraia de .
Etapa 1.3
Avalie o limite do denominador.
Etapa 1.3.1
Mova o limite dentro da função trigonométrica, pois a tangente é contínua.
Etapa 1.3.2
Avalie o limite de substituindo por .
Etapa 1.3.3
O valor exato de é .
Etapa 1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3
Etapa 3.1
Diferencie o numerador e o denominador.
Etapa 3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.5
Some e .
Etapa 3.6
A derivada de em relação a é .
Etapa 4
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 5
Mova o limite para o expoente.
Etapa 6
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 7
Mova o limite dentro da função trigonométrica, pois a secante é contínua.
Etapa 8
Etapa 8.1
Avalie o limite de substituindo por .
Etapa 8.2
Avalie o limite de substituindo por .
Etapa 9
Etapa 9.1
Qualquer coisa elevada a é .
Etapa 9.2
Simplifique o denominador.
Etapa 9.2.1
O valor exato de é .
Etapa 9.2.2
Um elevado a qualquer potência é um.
Etapa 9.3
Divida por .