Cálculo Exemplos

Ermittle die Second-Ableitung y=x^(8/9)+3x
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2.3
Combine e .
Etapa 1.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.2.5.1
Multiplique por .
Etapa 1.2.5.2
Subtraia de .
Etapa 1.2.6
Mova o número negativo para a frente da fração.
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.4.2
Multiplique por .
Etapa 2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Reescreva como .
Etapa 2.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3.3
Substitua todas as ocorrências de por .
Etapa 2.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.5
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.2.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.5.2
Combine e .
Etapa 2.2.5.3
Mova o número negativo para a frente da fração.
Etapa 2.2.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.2.7
Combine e .
Etapa 2.2.8
Combine os numeradores em relação ao denominador comum.
Etapa 2.2.9
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.2.9.1
Multiplique por .
Etapa 2.2.9.2
Subtraia de .
Etapa 2.2.10
Mova o número negativo para a frente da fração.
Etapa 2.2.11
Combine e .
Etapa 2.2.12
Combine e .
Etapa 2.2.13
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.2.13.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.2.13.2
Combine os numeradores em relação ao denominador comum.
Etapa 2.2.13.3
Subtraia de .
Etapa 2.2.13.4
Mova o número negativo para a frente da fração.
Etapa 2.2.14
Mova para o denominador usando a regra do expoente negativo .
Etapa 2.2.15
Multiplique por .
Etapa 2.2.16
Multiplique por .
Etapa 2.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Some e .