Insira um problema...
Cálculo Exemplos
Etapa 1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.5
Multiplique por .
Etapa 2.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.7
Some e .
Etapa 2.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.11
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.12
Multiplique por .
Etapa 2.13
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.14
Some e .
Etapa 3
Etapa 3.1
Aplique a propriedade distributiva.
Etapa 3.2
Simplifique o numerador.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Expanda multiplicando cada termo na primeira expressão por cada um dos termos na segunda expressão.
Etapa 3.2.1.2
Simplifique cada termo.
Etapa 3.2.1.2.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.2.2
Multiplique por somando os expoentes.
Etapa 3.2.1.2.2.1
Mova .
Etapa 3.2.1.2.2.2
Multiplique por .
Etapa 3.2.1.2.2.2.1
Eleve à potência de .
Etapa 3.2.1.2.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.2.1.2.2.3
Some e .
Etapa 3.2.1.2.3
Mova para a esquerda de .
Etapa 3.2.1.2.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.2.5
Multiplique por somando os expoentes.
Etapa 3.2.1.2.5.1
Mova .
Etapa 3.2.1.2.5.2
Multiplique por .
Etapa 3.2.1.2.6
Multiplique por .
Etapa 3.2.1.2.7
Multiplique por .
Etapa 3.2.1.2.8
Multiplique por .
Etapa 3.2.1.2.9
Multiplique por .
Etapa 3.2.1.3
Subtraia de .
Etapa 3.2.1.4
Subtraia de .
Etapa 3.2.1.5
Simplifique cada termo.
Etapa 3.2.1.5.1
Multiplique por .
Etapa 3.2.1.5.2
Multiplique por .
Etapa 3.2.1.6
Expanda multiplicando cada termo na primeira expressão por cada um dos termos na segunda expressão.
Etapa 3.2.1.7
Simplifique cada termo.
Etapa 3.2.1.7.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.7.2
Multiplique por somando os expoentes.
Etapa 3.2.1.7.2.1
Mova .
Etapa 3.2.1.7.2.2
Multiplique por .
Etapa 3.2.1.7.2.2.1
Eleve à potência de .
Etapa 3.2.1.7.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.2.1.7.2.3
Some e .
Etapa 3.2.1.7.3
Multiplique por .
Etapa 3.2.1.7.4
Multiplique por .
Etapa 3.2.1.7.5
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.7.6
Multiplique por somando os expoentes.
Etapa 3.2.1.7.6.1
Mova .
Etapa 3.2.1.7.6.2
Multiplique por .
Etapa 3.2.1.7.7
Multiplique por .
Etapa 3.2.1.7.8
Multiplique por .
Etapa 3.2.1.7.9
Multiplique por .
Etapa 3.2.1.7.10
Multiplique por .
Etapa 3.2.1.8
Subtraia de .
Etapa 3.2.1.9
Subtraia de .
Etapa 3.2.2
Combine os termos opostos em .
Etapa 3.2.2.1
Subtraia de .
Etapa 3.2.2.2
Some e .
Etapa 3.2.3
Subtraia de .
Etapa 3.2.4
Some e .
Etapa 3.2.5
Some e .
Etapa 3.3
Simplifique o numerador.
Etapa 3.3.1
Fatore de .
Etapa 3.3.1.1
Fatore de .
Etapa 3.3.1.2
Fatore de .
Etapa 3.3.1.3
Fatore de .
Etapa 3.3.1.4
Fatore de .
Etapa 3.3.1.5
Fatore de .
Etapa 3.3.2
Fatore por agrupamento.
Etapa 3.3.2.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 3.3.2.1.1
Fatore de .
Etapa 3.3.2.1.2
Reescreva como mais
Etapa 3.3.2.1.3
Aplique a propriedade distributiva.
Etapa 3.3.2.2
Fatore o máximo divisor comum de cada grupo.
Etapa 3.3.2.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 3.3.2.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 3.3.2.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 3.3.3
Combine expoentes.
Etapa 3.3.3.1
Fatore de .
Etapa 3.3.3.2
Reescreva como .
Etapa 3.3.3.3
Fatore de .
Etapa 3.3.3.4
Reescreva como .
Etapa 3.3.3.5
Eleve à potência de .
Etapa 3.3.3.6
Eleve à potência de .
Etapa 3.3.3.7
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.3.3.8
Some e .
Etapa 3.3.3.9
Multiplique por .
Etapa 3.4
Simplifique o denominador.
Etapa 3.4.1
Fatore usando o método AC.
Etapa 3.4.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 3.4.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 3.4.2
Aplique a regra do produto a .
Etapa 3.5
Cancele o fator comum de .
Etapa 3.5.1
Cancele o fator comum.
Etapa 3.5.2
Reescreva a expressão.
Etapa 3.6
Mova o número negativo para a frente da fração.