Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=ax-3x logaritmo natural de x
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.3.3
A derivada de em relação a é .
Etapa 1.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.5
Combine e .
Etapa 1.3.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.6.1
Cancele o fator comum.
Etapa 1.3.6.2
Reescreva a expressão.
Etapa 1.3.7
Multiplique por .
Etapa 1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1
Aplique a propriedade distributiva.
Etapa 1.4.2
Multiplique por .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
A derivada de em relação a é .
Etapa 2.2.3
Combine e .
Etapa 2.2.4
Mova o número negativo para a frente da fração.
Etapa 2.3
Combine os termos.
Toque para ver mais passagens...
Etapa 2.3.1
Some e .
Etapa 2.3.2
Subtraia de .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2
Avalie .
Toque para ver mais passagens...
Etapa 4.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Multiplique por .
Etapa 4.1.3
Avalie .
Toque para ver mais passagens...
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 4.1.3.3
A derivada de em relação a é .
Etapa 4.1.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.5
Combine e .
Etapa 4.1.3.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.1.3.6.1
Cancele o fator comum.
Etapa 4.1.3.6.2
Reescreva a expressão.
Etapa 4.1.3.7
Multiplique por .
Etapa 4.1.4
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.4.1
Aplique a propriedade distributiva.
Etapa 4.1.4.2
Multiplique por .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 5.2.1
Subtraia dos dois lados da equação.
Etapa 5.2.2
Some aos dois lados da equação.
Etapa 5.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.3.1
Divida cada termo em por .
Etapa 5.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.3.2.1.1
Cancele o fator comum.
Etapa 5.3.2.1.2
Divida por .
Etapa 5.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.3.3.1.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 5.3.3.1.2
Divida por .
Etapa 5.4
Para resolver , reescreva a equação usando propriedades de logaritmos.
Etapa 5.5
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 5.6
Reescreva a equação como .
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
Defina o argumento em como menor do que ou igual a para encontrar onde a expressão está indefinida.
Etapa 6.2
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 9.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 9.2
Combine e .
Etapa 9.3
Combine os numeradores em relação ao denominador comum.
Etapa 9.4
Multiplique por .
Etapa 10
Como o teste da primeira derivada falhou, não há um extremo local.
Nenhum extremo local
Etapa 11