Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.2
Diferencie.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3
Some e .
Etapa 1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.6
Simplifique a expressão.
Etapa 1.2.6.1
Multiplique por .
Etapa 1.2.6.2
Mova para a esquerda de .
Etapa 1.3
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.4
Diferencie.
Etapa 1.4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.4.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.3
Some e .
Etapa 1.4.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.6
Simplifique a expressão.
Etapa 1.4.6.1
Multiplique por .
Etapa 1.4.6.2
Mova para a esquerda de .
Etapa 1.4.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.8
Simplifique somando os termos.
Etapa 1.4.8.1
Multiplique por .
Etapa 1.4.8.2
Subtraia de .
Etapa 1.5
Simplifique.
Etapa 1.5.1
Aplique a propriedade distributiva.
Etapa 1.5.2
Aplique a propriedade distributiva.
Etapa 1.5.3
Aplique a propriedade distributiva.
Etapa 1.5.4
Aplique a propriedade distributiva.
Etapa 1.5.5
Combine os termos.
Etapa 1.5.5.1
Multiplique por .
Etapa 1.5.5.2
Multiplique por .
Etapa 1.5.5.3
Eleve à potência de .
Etapa 1.5.5.4
Eleve à potência de .
Etapa 1.5.5.5
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.5.5.6
Some e .
Etapa 1.5.5.7
Multiplique por .
Etapa 1.5.5.8
Multiplique por .
Etapa 1.5.5.9
Eleve à potência de .
Etapa 1.5.5.10
Eleve à potência de .
Etapa 1.5.5.11
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.5.5.12
Some e .
Etapa 1.5.5.13
Multiplique por .
Etapa 1.5.5.14
Multiplique por .
Etapa 1.5.5.15
Subtraia de .
Etapa 1.5.5.16
Subtraia de .
Etapa 1.5.5.17
Some e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Diferencie usando a regra da constante.
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Some e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Etapa 4.1
Encontre a primeira derivada.
Etapa 4.1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 4.1.2
Diferencie.
Etapa 4.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.3
Some e .
Etapa 4.1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.6
Simplifique a expressão.
Etapa 4.1.2.6.1
Multiplique por .
Etapa 4.1.2.6.2
Mova para a esquerda de .
Etapa 4.1.3
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 4.1.4
Diferencie.
Etapa 4.1.4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.4.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.4.3
Some e .
Etapa 4.1.4.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.4.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4.6
Simplifique a expressão.
Etapa 4.1.4.6.1
Multiplique por .
Etapa 4.1.4.6.2
Mova para a esquerda de .
Etapa 4.1.4.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4.8
Simplifique somando os termos.
Etapa 4.1.4.8.1
Multiplique por .
Etapa 4.1.4.8.2
Subtraia de .
Etapa 4.1.5
Simplifique.
Etapa 4.1.5.1
Aplique a propriedade distributiva.
Etapa 4.1.5.2
Aplique a propriedade distributiva.
Etapa 4.1.5.3
Aplique a propriedade distributiva.
Etapa 4.1.5.4
Aplique a propriedade distributiva.
Etapa 4.1.5.5
Combine os termos.
Etapa 4.1.5.5.1
Multiplique por .
Etapa 4.1.5.5.2
Multiplique por .
Etapa 4.1.5.5.3
Eleve à potência de .
Etapa 4.1.5.5.4
Eleve à potência de .
Etapa 4.1.5.5.5
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.5.5.6
Some e .
Etapa 4.1.5.5.7
Multiplique por .
Etapa 4.1.5.5.8
Multiplique por .
Etapa 4.1.5.5.9
Eleve à potência de .
Etapa 4.1.5.5.10
Eleve à potência de .
Etapa 4.1.5.5.11
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.5.5.12
Some e .
Etapa 4.1.5.5.13
Multiplique por .
Etapa 4.1.5.5.14
Multiplique por .
Etapa 4.1.5.5.15
Subtraia de .
Etapa 4.1.5.5.16
Subtraia de .
Etapa 4.1.5.5.17
Some e .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Fatore o lado esquerdo da equação.
Etapa 5.2.1
Fatore de .
Etapa 5.2.1.1
Fatore de .
Etapa 5.2.1.2
Fatore de .
Etapa 5.2.1.3
Fatore de .
Etapa 5.2.1.4
Fatore de .
Etapa 5.2.1.5
Fatore de .
Etapa 5.2.2
Fatore.
Etapa 5.2.2.1
Fatore por agrupamento.
Etapa 5.2.2.1.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 5.2.2.1.1.1
Fatore de .
Etapa 5.2.2.1.1.2
Reescreva como mais
Etapa 5.2.2.1.1.3
Aplique a propriedade distributiva.
Etapa 5.2.2.1.2
Fatore o máximo divisor comum de cada grupo.
Etapa 5.2.2.1.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 5.2.2.1.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 5.2.2.1.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 5.2.2.2
Remova os parênteses desnecessários.
Etapa 5.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 5.4
Defina como igual a e resolva para .
Etapa 5.4.1
Defina como igual a .
Etapa 5.4.2
Some aos dois lados da equação.
Etapa 5.5
Defina como igual a e resolva para .
Etapa 5.5.1
Defina como igual a .
Etapa 5.5.2
Resolva para .
Etapa 5.5.2.1
Some aos dois lados da equação.
Etapa 5.5.2.2
Divida cada termo em por e simplifique.
Etapa 5.5.2.2.1
Divida cada termo em por .
Etapa 5.5.2.2.2
Simplifique o lado esquerdo.
Etapa 5.5.2.2.2.1
Cancele o fator comum de .
Etapa 5.5.2.2.2.1.1
Cancele o fator comum.
Etapa 5.5.2.2.2.1.2
Divida por .
Etapa 5.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 6
Etapa 6.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Etapa 9.1
Multiplique por .
Etapa 9.2
Subtraia de .
Etapa 10
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 11
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Etapa 11.2.1
Multiplique por .
Etapa 11.2.2
Subtraia de .
Etapa 11.2.3
Multiplique por .
Etapa 11.2.4
Multiplique por .
Etapa 11.2.5
Subtraia de .
Etapa 11.2.6
Multiplique por .
Etapa 11.2.7
A resposta final é .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Etapa 13.1
Simplifique cada termo.
Etapa 13.1.1
Cancele o fator comum de .
Etapa 13.1.1.1
Fatore de .
Etapa 13.1.1.2
Cancele o fator comum.
Etapa 13.1.1.3
Reescreva a expressão.
Etapa 13.1.2
Multiplique por .
Etapa 13.2
Subtraia de .
Etapa 14
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 15
Etapa 15.1
Substitua a variável por na expressão.
Etapa 15.2
Simplifique o resultado.
Etapa 15.2.1
Simplifique cada termo.
Etapa 15.2.1.1
Multiplique .
Etapa 15.2.1.1.1
Combine e .
Etapa 15.2.1.1.2
Multiplique por .
Etapa 15.2.1.2
Mova o número negativo para a frente da fração.
Etapa 15.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 15.2.3
Combine e .
Etapa 15.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 15.2.5
Simplifique o numerador.
Etapa 15.2.5.1
Multiplique por .
Etapa 15.2.5.2
Subtraia de .
Etapa 15.2.6
Mova o número negativo para a frente da fração.
Etapa 15.2.7
Multiplique .
Etapa 15.2.7.1
Multiplique por .
Etapa 15.2.7.2
Multiplique por .
Etapa 15.2.7.3
Multiplique por .
Etapa 15.2.8
Simplifique cada termo.
Etapa 15.2.8.1
Multiplique .
Etapa 15.2.8.1.1
Combine e .
Etapa 15.2.8.1.2
Multiplique por .
Etapa 15.2.8.2
Mova o número negativo para a frente da fração.
Etapa 15.2.9
Para escrever como fração com um denominador comum, multiplique por .
Etapa 15.2.10
Combine e .
Etapa 15.2.11
Combine os numeradores em relação ao denominador comum.
Etapa 15.2.12
Simplifique o numerador.
Etapa 15.2.12.1
Multiplique por .
Etapa 15.2.12.2
Subtraia de .
Etapa 15.2.13
Multiplique .
Etapa 15.2.13.1
Multiplique por .
Etapa 15.2.13.2
Multiplique por .
Etapa 15.2.13.3
Multiplique por .
Etapa 15.2.14
A resposta final é .
Etapa 16
Esses são os extremos locais para .
é um máximo local
é um mínimo local
Etapa 17