Cálculo Exemplos

Encontre o Máximo e Mínimo Local p(x)=-1/3x^3-2/3x^2-15x-4
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
Diferencie usando a regra da soma.
Toque para ver mais passagens...
Etapa 1.1.1
Mova o número negativo para a frente da fração.
Etapa 1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.2.4
Combine e .
Etapa 1.2.5
Combine e .
Etapa 1.2.6
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.2.6.1
Fatore de .
Etapa 1.2.6.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.6.2.1
Fatore de .
Etapa 1.2.6.2.2
Cancele o fator comum.
Etapa 1.2.6.2.3
Reescreva a expressão.
Etapa 1.2.6.2.4
Divida por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.3.4
Combine e .
Etapa 1.3.5
Multiplique por .
Etapa 1.3.6
Combine e .
Etapa 1.3.7
Mova o número negativo para a frente da fração.
Etapa 1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.3
Multiplique por .
Etapa 1.5
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.5.2
Some e .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Some e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Visto que não há um valor de que torne a primeira derivada igual a , não há extremos locais.
Nenhum extremo local
Etapa 5
Nenhum extremo local
Etapa 6