Insira um problema...
Cálculo Exemplos
Etapa 1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2
Etapa 2.1
Subtraia dos dois lados da desigualdade.
Etapa 2.2
Divida cada termo em por e simplifique.
Etapa 2.2.1
Divida cada termo em por .
Etapa 2.2.2
Simplifique o lado esquerdo.
Etapa 2.2.2.1
Cancele o fator comum de .
Etapa 2.2.2.1.1
Cancele o fator comum.
Etapa 2.2.2.1.2
Divida por .
Etapa 2.2.3
Simplifique o lado direito.
Etapa 2.2.3.1
Divida por .
Etapa 2.3
Como o lado esquerdo tem uma potência par, ele é sempre positivo para todos os números reais.
Todos os números reais
Todos os números reais
Etapa 3
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 4
Etapa 4.1
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 4.2
Simplifique cada lado da equação.
Etapa 4.2.1
Use para reescrever como .
Etapa 4.2.2
Simplifique o lado esquerdo.
Etapa 4.2.2.1
Simplifique .
Etapa 4.2.2.1.1
Multiplique os expoentes em .
Etapa 4.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.2.2.1.1.2
Cancele o fator comum de .
Etapa 4.2.2.1.1.2.1
Cancele o fator comum.
Etapa 4.2.2.1.1.2.2
Reescreva a expressão.
Etapa 4.2.2.1.2
Simplifique.
Etapa 4.2.3
Simplifique o lado direito.
Etapa 4.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 4.3
Resolva .
Etapa 4.3.1
Subtraia dos dois lados da equação.
Etapa 4.3.2
Divida cada termo em por e simplifique.
Etapa 4.3.2.1
Divida cada termo em por .
Etapa 4.3.2.2
Simplifique o lado esquerdo.
Etapa 4.3.2.2.1
Cancele o fator comum de .
Etapa 4.3.2.2.1.1
Cancele o fator comum.
Etapa 4.3.2.2.1.2
Divida por .
Etapa 4.3.2.3
Simplifique o lado direito.
Etapa 4.3.2.3.1
Divida por .
Etapa 4.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 4.3.4
Simplifique .
Etapa 4.3.4.1
Reescreva como .
Etapa 4.3.4.2
Reescreva como .
Etapa 4.3.4.3
Reescreva como .
Etapa 4.3.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4.3.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.3.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.3.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5
O domínio consiste em números reais apenas.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 6
O intervalo é o conjunto de todos os valores válidos. Use o gráfico para encontrar o intervalo.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 7
Determine o domínio e o intervalo.
Domínio:
Intervalo:
Etapa 8