Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=8.4x^0.75-2.1x+38.75
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.5
Simplifique.
Toque para ver mais passagens...
Etapa 1.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.5.2
Combine os termos.
Toque para ver mais passagens...
Etapa 1.5.2.1
Combine e .
Etapa 1.5.2.2
Some e .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Reescreva como .
Etapa 2.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3.3
Substitua todas as ocorrências de por .
Etapa 2.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.5
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.2.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.5.2
Multiplique por .
Etapa 2.2.6
Multiplique por .
Etapa 2.2.7
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.2.7.1
Mova .
Etapa 2.2.7.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.2.7.3
Subtraia de .
Etapa 2.2.8
Multiplique por .
Etapa 2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4
Simplifique.
Toque para ver mais passagens...
Etapa 2.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.4.2
Combine os termos.
Toque para ver mais passagens...
Etapa 2.4.2.1
Combine e .
Etapa 2.4.2.2
Mova o número negativo para a frente da fração.
Etapa 2.4.2.3
Some e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2
Avalie .
Toque para ver mais passagens...
Etapa 4.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Multiplique por .
Etapa 4.1.3
Avalie .
Toque para ver mais passagens...
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.3
Multiplique por .
Etapa 4.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.5
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 4.1.5.2
Combine os termos.
Toque para ver mais passagens...
Etapa 4.1.5.2.1
Combine e .
Etapa 4.1.5.2.2
Some e .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Some aos dois lados da equação.
Etapa 5.3
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 5.3.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 5.3.2
O MMC de um e qualquer expressão é a expressão.
Etapa 5.4
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 5.4.1
Multiplique cada termo em por .
Etapa 5.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.4.2.1.1
Cancele o fator comum.
Etapa 5.4.2.1.2
Reescreva a expressão.
Etapa 5.5
Resolva a equação.
Toque para ver mais passagens...
Etapa 5.5.1
Reescreva a equação como .
Etapa 5.5.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.5.2.1
Divida cada termo em por .
Etapa 5.5.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.5.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.5.2.2.1.1
Cancele o fator comum.
Etapa 5.5.2.2.1.2
Divida por .
Etapa 5.5.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.5.2.3.1
Divida por .
Etapa 5.5.3
Converta o expoente decimal em um expoente fracionário.
Toque para ver mais passagens...
Etapa 5.5.3.1
Converta o número decimal em uma fração, elevando-o à décima potência. Como existem números à direita do ponto decimal, coloque o número decimal sobre . Em seguida, adicione o número inteiro à esquerda do decimal.
Etapa 5.5.3.2
Reduza a fração.
Toque para ver mais passagens...
Etapa 5.5.3.2.1
Converta em uma fração imprópria.
Toque para ver mais passagens...
Etapa 5.5.3.2.1.1
Um número misto é uma soma de suas partes inteiras e fracionárias.
Etapa 5.5.3.2.1.2
Some e .
Etapa 5.5.3.2.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 5.5.3.2.2.1
Fatore de .
Etapa 5.5.3.2.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 5.5.3.2.2.2.1
Fatore de .
Etapa 5.5.3.2.2.2.2
Cancele o fator comum.
Etapa 5.5.3.2.2.2.3
Reescreva a expressão.
Etapa 5.5.4
Eleve cada lado da equação à potência de para eliminar o expoente fracionário no lado esquerdo.
Etapa 5.5.5
Simplifique o expoente.
Toque para ver mais passagens...
Etapa 5.5.5.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.5.5.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 5.5.5.1.1.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 5.5.5.1.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.5.5.1.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.5.5.1.1.1.2.1
Fatore de .
Etapa 5.5.5.1.1.1.2.2
Cancele o fator comum.
Etapa 5.5.5.1.1.1.2.3
Reescreva a expressão.
Etapa 5.5.5.1.1.1.3
Divida por .
Etapa 5.5.5.1.1.2
Simplifique.
Etapa 5.5.5.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.5.5.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 5.5.5.2.1.1
Divida por .
Etapa 5.5.5.2.1.2
Eleve à potência de .
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
Converta expressões com expoentes fracionários em radicais.
Toque para ver mais passagens...
Etapa 6.1.1
Altere em uma fração.
Toque para ver mais passagens...
Etapa 6.1.1.1
Multiplique por para remover o decimal.
Etapa 6.1.1.2
Multiplique por .
Etapa 6.1.1.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 6.1.1.3.1
Fatore de .
Etapa 6.1.1.3.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 6.1.1.3.2.1
Fatore de .
Etapa 6.1.1.3.2.2
Cancele o fator comum.
Etapa 6.1.1.3.2.3
Reescreva a expressão.
Etapa 6.1.2
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 6.1.3
Qualquer número elevado a é a própria base.
Etapa 6.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 6.3
Resolva .
Toque para ver mais passagens...
Etapa 6.3.1
Para remover o radical no lado esquerdo da equação, eleve os dois lados da equação à ª potência.
Etapa 6.3.2
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 6.3.2.1
Use para reescrever como .
Etapa 6.3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.3.2.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.1.2.1
Cancele o fator comum.
Etapa 6.3.2.2.1.1.2.2
Reescreva a expressão.
Etapa 6.3.2.2.1.2
Simplifique.
Etapa 6.3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 6.4
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 6.5
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 9.1
Eleve à potência de .
Etapa 9.2
Divida por .
Etapa 9.3
Multiplique por .
Etapa 10
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 11
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 11.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 11.2.1.1
Eleve à potência de .
Etapa 11.2.1.2
Multiplique por .
Etapa 11.2.1.3
Multiplique por .
Etapa 11.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 11.2.2.1
Subtraia de .
Etapa 11.2.2.2
Some e .
Etapa 11.2.3
A resposta final é .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 13.1
Elevar a qualquer potência positiva produz .
Etapa 13.2
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Indefinido
Etapa 14
Como o teste da primeira derivada falhou, não há um extremo local.
Nenhum extremo local
Etapa 15