Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=48x^(2/3)-9x^2
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2.4
Combine e .
Etapa 1.2.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.2.6.1
Multiplique por .
Etapa 1.2.6.2
Subtraia de .
Etapa 1.2.7
Mova o número negativo para a frente da fração.
Etapa 1.2.8
Combine e .
Etapa 1.2.9
Combine e .
Etapa 1.2.10
Multiplique por .
Etapa 1.2.11
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.2.12
Fatore de .
Etapa 1.2.13
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.13.1
Fatore de .
Etapa 1.2.13.2
Cancele o fator comum.
Etapa 1.2.13.3
Reescreva a expressão.
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Reordene os termos.
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Reescreva como .
Etapa 2.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3.3
Substitua todas as ocorrências de por .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.3.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.5.2
Combine e .
Etapa 2.3.5.3
Mova o número negativo para a frente da fração.
Etapa 2.3.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.3.7
Combine e .
Etapa 2.3.8
Combine os numeradores em relação ao denominador comum.
Etapa 2.3.9
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.3.9.1
Multiplique por .
Etapa 2.3.9.2
Subtraia de .
Etapa 2.3.10
Mova o número negativo para a frente da fração.
Etapa 2.3.11
Combine e .
Etapa 2.3.12
Combine e .
Etapa 2.3.13
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.3.13.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.13.2
Combine os numeradores em relação ao denominador comum.
Etapa 2.3.13.3
Subtraia de .
Etapa 2.3.13.4
Mova o número negativo para a frente da fração.
Etapa 2.3.14
Mova para o denominador usando a regra do expoente negativo .
Etapa 2.3.15
Multiplique por .
Etapa 2.3.16
Combine e .
Etapa 2.3.17
Mova o número negativo para a frente da fração.
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 4.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2
Avalie .
Toque para ver mais passagens...
Etapa 4.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.1.2.4
Combine e .
Etapa 4.1.2.5
Combine os numeradores em relação ao denominador comum.
Etapa 4.1.2.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 4.1.2.6.1
Multiplique por .
Etapa 4.1.2.6.2
Subtraia de .
Etapa 4.1.2.7
Mova o número negativo para a frente da fração.
Etapa 4.1.2.8
Combine e .
Etapa 4.1.2.9
Combine e .
Etapa 4.1.2.10
Multiplique por .
Etapa 4.1.2.11
Mova para o denominador usando a regra do expoente negativo .
Etapa 4.1.2.12
Fatore de .
Etapa 4.1.2.13
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.1.2.13.1
Fatore de .
Etapa 4.1.2.13.2
Cancele o fator comum.
Etapa 4.1.2.13.3
Reescreva a expressão.
Etapa 4.1.3
Avalie .
Toque para ver mais passagens...
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.3
Multiplique por .
Etapa 4.1.4
Reordene os termos.
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 5.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 5.2.2
O MMC de um e qualquer expressão é a expressão.
Etapa 5.3
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 5.3.1
Multiplique cada termo em por .
Etapa 5.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.3.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 5.3.2.1.1.1
Mova .
Etapa 5.3.2.1.1.2
Multiplique por .
Toque para ver mais passagens...
Etapa 5.3.2.1.1.2.1
Eleve à potência de .
Etapa 5.3.2.1.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 5.3.2.1.1.3
Escreva como uma fração com um denominador comum.
Etapa 5.3.2.1.1.4
Combine os numeradores em relação ao denominador comum.
Etapa 5.3.2.1.1.5
Some e .
Etapa 5.3.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.3.2.1.2.1
Cancele o fator comum.
Etapa 5.3.2.1.2.2
Reescreva a expressão.
Etapa 5.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.3.3.1
Multiplique por .
Etapa 5.4
Resolva a equação.
Toque para ver mais passagens...
Etapa 5.4.1
Subtraia dos dois lados da equação.
Etapa 5.4.2
Eleve cada lado da equação à potência de para eliminar o expoente fracionário no lado esquerdo.
Etapa 5.4.3
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.4.3.1
Simplifique .
Toque para ver mais passagens...
Etapa 5.4.3.1.1
Aplique a regra do produto a .
Etapa 5.4.3.1.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 5.4.3.1.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.4.3.1.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.4.3.1.2.2.1
Cancele o fator comum.
Etapa 5.4.3.1.2.2.2
Reescreva a expressão.
Etapa 5.4.3.1.2.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.4.3.1.2.3.1
Cancele o fator comum.
Etapa 5.4.3.1.2.3.2
Reescreva a expressão.
Etapa 5.4.3.1.3
Simplifique.
Etapa 5.4.3.1.4
Reordene os fatores em .
Etapa 5.4.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 5.4.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 5.4.4.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.4.4.2.1
Divida cada termo em por .
Etapa 5.4.4.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.4.4.2.2.1
Cancele o fator comum.
Etapa 5.4.4.2.2.2
Divida por .
Etapa 5.4.4.3
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 5.4.4.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.4.4.4.1
Divida cada termo em por .
Etapa 5.4.4.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.4.4.4.2.1
Cancele o fator comum.
Etapa 5.4.4.4.2.2
Divida por .
Etapa 5.4.4.4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.4.4.4.3.1
Mova o número negativo para a frente da fração.
Etapa 5.4.4.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5.5
Exclua as soluções que não tornam verdadeira.
Etapa 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 6.1
Converta expressões com expoentes fracionários em radicais.
Toque para ver mais passagens...
Etapa 6.1.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 6.1.2
Qualquer número elevado a é a própria base.
Etapa 6.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 6.3
Resolva .
Toque para ver mais passagens...
Etapa 6.3.1
Para remover o radical no lado esquerdo da equação, eleve ao cubo os dois lados da equação.
Etapa 6.3.2
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 6.3.2.1
Use para reescrever como .
Etapa 6.3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.3.2.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.3.2.2.1.1.2.1
Cancele o fator comum.
Etapa 6.3.2.2.1.1.2.2
Reescreva a expressão.
Etapa 6.3.2.2.1.2
Simplifique.
Etapa 6.3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 9.1
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 9.1.1
Reescreva como .
Etapa 9.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 9.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 9.2.1
Cancele o fator comum.
Etapa 9.2.2
Reescreva a expressão.
Etapa 9.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 9.3.1
Elevar a qualquer potência positiva produz .
Etapa 9.3.2
Multiplique por .
Etapa 9.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 9.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Indefinido
Etapa 10
Como há pelo menos um ponto com ou segunda derivada indefinida, aplique o teste da primeira derivada.
Toque para ver mais passagens...
Etapa 10.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 10.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.2.1
Substitua a variável por na expressão.
Etapa 10.2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.2.2.1
Multiplique por .
Etapa 10.2.2.2
A resposta final é .
Etapa 10.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 10.3.1
Substitua a variável por na expressão.
Etapa 10.3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 10.3.2.1
Multiplique por .
Etapa 10.3.2.2
A resposta final é .
Etapa 10.4
Como a primeira derivada mudou os sinais de positivo para negativo em torno de , então é um máximo local.
é um máximo local
é um máximo local
Etapa 11