Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=3cos(x)-cos(x)^3
Etapa 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
A derivada de em relação a é .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.2.3
Substitua todas as ocorrências de por .
Etapa 1.3.3
A derivada de em relação a é .
Etapa 1.3.4
Multiplique por .
Etapa 1.3.5
Multiplique por .
Etapa 1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1
Reordene os termos.
Etapa 1.4.2
Fatore de .
Toque para ver mais passagens...
Etapa 1.4.2.1
Fatore de .
Etapa 1.4.2.2
Fatore de .
Etapa 1.4.2.3
Fatore de .
Etapa 1.4.3
Reordene e .
Etapa 1.4.4
Reescreva como .
Etapa 1.4.5
Fatore de .
Etapa 1.4.6
Fatore de .
Etapa 1.4.7
Reescreva como .
Etapa 1.4.8
Aplique a identidade trigonométrica fundamental.
Etapa 1.4.9
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.4.9.1
Mova .
Etapa 1.4.9.2
Multiplique por .
Toque para ver mais passagens...
Etapa 1.4.9.2.1
Eleve à potência de .
Etapa 1.4.9.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.4.9.3
Some e .
Etapa 1.4.10
Multiplique por .
Etapa 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Multiplique por .
Etapa 2.4
A derivada de em relação a é .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.1
Divida cada termo em por .
Etapa 4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.1.1
Cancele o fator comum.
Etapa 4.2.1.2
Divida por .
Etapa 4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.3.1
Divida por .
Etapa 5
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 6
Simplifique .
Toque para ver mais passagens...
Etapa 6.1
Reescreva como .
Etapa 6.2
Elimine os termos abaixo do radical, presumindo que sejam números reais.
Etapa 7
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 8
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 8.1
O valor exato de é .
Etapa 9
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 10
Subtraia de .
Etapa 11
A solução para a equação .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 13.1
O valor exato de é .
Etapa 13.2
Elevar a qualquer potência positiva produz .
Etapa 13.3
Multiplique por .
Etapa 13.4
O valor exato de é .
Etapa 13.5
Multiplique por .
Etapa 14
Como há pelo menos um ponto com ou segunda derivada indefinida, aplique o teste da primeira derivada.
Toque para ver mais passagens...
Etapa 14.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 14.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 14.2.1
Substitua a variável por na expressão.
Etapa 14.2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 14.2.2.1
Avalie .
Etapa 14.2.2.2
Eleve à potência de .
Etapa 14.2.2.3
Multiplique por .
Etapa 14.2.2.4
A resposta final é .
Etapa 14.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 14.3.1
Substitua a variável por na expressão.
Etapa 14.3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 14.3.2.1
Avalie .
Etapa 14.3.2.2
Eleve à potência de .
Etapa 14.3.2.3
Multiplique por .
Etapa 14.3.2.4
A resposta final é .
Etapa 14.4
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Toque para ver mais passagens...
Etapa 14.4.1
Substitua a variável por na expressão.
Etapa 14.4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 14.4.2.1
Avalie .
Etapa 14.4.2.2
Eleve à potência de .
Etapa 14.4.2.3
Multiplique por .
Etapa 14.4.2.4
A resposta final é .
Etapa 14.5
Como a primeira derivada mudou os sinais de positivo para negativo em torno de , então é um máximo local.
é um máximo local
Etapa 14.6
Como a primeira derivada mudou os sinais de negativo para positivo em torno de , então é um mínimo local.
é um mínimo local
Etapa 14.7
Esses são os extremos locais para .
é um máximo local
é um mínimo local
é um máximo local
é um mínimo local
Etapa 15