Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.2.2
A derivada de em relação a é .
Etapa 1.3.2.3
Substitua todas as ocorrências de por .
Etapa 1.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.5
Multiplique por .
Etapa 1.3.6
Mova para a esquerda de .
Etapa 1.3.7
Multiplique por .
Etapa 2
Etapa 2.1
Diferencie.
Etapa 2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2.2
A derivada de em relação a é .
Etapa 2.2.2.3
Substitua todas as ocorrências de por .
Etapa 2.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.5
Multiplique por .
Etapa 2.2.6
Multiplique por .
Etapa 2.2.7
Multiplique por .
Etapa 2.3
Some e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Subtraia dos dois lados da equação.
Etapa 5
Etapa 5.1
Divida cada termo em por .
Etapa 5.2
Simplifique o lado esquerdo.
Etapa 5.2.1
Cancele o fator comum de .
Etapa 5.2.1.1
Cancele o fator comum.
Etapa 5.2.1.2
Divida por .
Etapa 5.3
Simplifique o lado direito.
Etapa 5.3.1
Divida por .
Etapa 6
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 7
Etapa 7.1
O valor exato de é .
Etapa 8
Etapa 8.1
Divida cada termo em por .
Etapa 8.2
Simplifique o lado esquerdo.
Etapa 8.2.1
Cancele o fator comum de .
Etapa 8.2.1.1
Cancele o fator comum.
Etapa 8.2.1.2
Divida por .
Etapa 8.3
Simplifique o lado direito.
Etapa 8.3.1
Divida por .
Etapa 9
A função do cosseno é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 10
Etapa 10.1
Simplifique.
Etapa 10.1.1
Multiplique por .
Etapa 10.1.2
Some e .
Etapa 10.2
Divida cada termo em por e simplifique.
Etapa 10.2.1
Divida cada termo em por .
Etapa 10.2.2
Simplifique o lado esquerdo.
Etapa 10.2.2.1
Cancele o fator comum de .
Etapa 10.2.2.1.1
Cancele o fator comum.
Etapa 10.2.2.1.2
Divida por .
Etapa 10.2.3
Simplifique o lado direito.
Etapa 10.2.3.1
Cancele o fator comum de .
Etapa 10.2.3.1.1
Cancele o fator comum.
Etapa 10.2.3.1.2
Divida por .
Etapa 11
A solução para a equação .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Etapa 13.1
Multiplique por .
Etapa 13.2
O valor exato de é .
Etapa 13.3
Multiplique por .
Etapa 14
Etapa 14.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 14.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 14.2.1
Substitua a variável por na expressão.
Etapa 14.2.2
Simplifique o resultado.
Etapa 14.2.2.1
Simplifique cada termo.
Etapa 14.2.2.1.1
Multiplique por .
Etapa 14.2.2.1.2
Avalie .
Etapa 14.2.2.1.3
Multiplique por .
Etapa 14.2.2.2
Some e .
Etapa 14.2.2.3
A resposta final é .
Etapa 14.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 14.3.1
Substitua a variável por na expressão.
Etapa 14.3.2
Simplifique o resultado.
Etapa 14.3.2.1
Simplifique cada termo.
Etapa 14.3.2.1.1
Multiplique por .
Etapa 14.3.2.1.2
Avalie .
Etapa 14.3.2.1.3
Multiplique por .
Etapa 14.3.2.2
Some e .
Etapa 14.3.2.3
A resposta final é .
Etapa 14.4
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 14.4.1
Substitua a variável por na expressão.
Etapa 14.4.2
Simplifique o resultado.
Etapa 14.4.2.1
Simplifique cada termo.
Etapa 14.4.2.1.1
Multiplique por .
Etapa 14.4.2.1.2
Avalie .
Etapa 14.4.2.1.3
Multiplique por .
Etapa 14.4.2.2
Subtraia de .
Etapa 14.4.2.3
A resposta final é .
Etapa 14.5
Como a primeira derivada não mudou os sinais em torno de , este não é um máximo local nem um mínimo local.
Não é um máximo nem um mínimo local
Etapa 14.6
Nenhum máximo ou mínimo local encontrado para .
Nenhum máximo ou mínimo local
Nenhum máximo ou mínimo local
Etapa 15