Cálculo Exemplos

Avalie o Limite limite à medida que x aproxima 8 de (64/x-8)/(8-x)
Etapa 1
Combine os termos.
Toque para ver mais passagens...
Etapa 1.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2
Combine e .
Etapa 1.3
Combine os numeradores em relação ao denominador comum.
Etapa 2
Simplifique o argumento do limite.
Toque para ver mais passagens...
Etapa 2.1
Multiplique o numerador pelo inverso do denominador.
Etapa 2.2
Multiplique por .
Etapa 3
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 3.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 3.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 3.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 3.1.2.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 3.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.1.2.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.1.2.1.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.1.2.2
Avalie o limite de substituindo por .
Etapa 3.1.2.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 3.1.2.3.1
Multiplique por .
Etapa 3.1.2.3.2
Subtraia de .
Etapa 3.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 3.1.3.1
Divida o limite usando a regra do produto dos limites no limite em que se aproxima de .
Etapa 3.1.3.2
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.1.3.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.1.3.4
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 3.1.3.4.1
Avalie o limite de substituindo por .
Etapa 3.1.3.4.2
Avalie o limite de substituindo por .
Etapa 3.1.3.5
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 3.1.3.5.1
Subtraia de .
Etapa 3.1.3.5.2
Multiplique por .
Etapa 3.1.3.5.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.1.3.6
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 3.3.1
Diferencie o numerador e o denominador.
Etapa 3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.4
Avalie .
Toque para ver mais passagens...
Etapa 3.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.4.3
Multiplique por .
Etapa 3.3.5
Subtraia de .
Etapa 3.3.6
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 3.3.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.9
Some e .
Etapa 3.3.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.11
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.12
Multiplique por .
Etapa 3.3.13
Mova para a esquerda de .
Etapa 3.3.14
Reescreva como .
Etapa 3.3.15
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.16
Multiplique por .
Etapa 3.3.17
Subtraia de .
Etapa 3.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 3.4.1
Fatore de .
Etapa 3.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 3.4.2.1
Fatore de .
Etapa 3.4.2.2
Fatore de .
Etapa 3.4.2.3
Fatore de .
Etapa 3.4.2.4
Cancele o fator comum.
Etapa 3.4.2.5
Reescreva a expressão.
Etapa 4
Avalie o limite.
Toque para ver mais passagens...
Etapa 4.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 4.2
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 4.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 4.4
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 4.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 4.6
Simplifique os termos.
Toque para ver mais passagens...
Etapa 4.6.1
Avalie o limite de substituindo por .
Etapa 4.6.2
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 4.6.2.1
Some e .
Etapa 4.6.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.6.2.2.1
Fatore de .
Etapa 4.6.2.2.2
Fatore de .
Etapa 4.6.2.2.3
Cancele o fator comum.
Etapa 4.6.2.2.4
Reescreva a expressão.
Etapa 4.6.2.3
Divida por .
Etapa 4.6.2.4
Multiplique por .