Cálculo Exemplos

Avalie o Limite limite à medida que s aproxima 8 de ((1/8)-(1/8))/(s-8)
Etapa 1
Simplifique o argumento do limite.
Toque para ver mais passagens...
Etapa 1.1
Combine os termos.
Toque para ver mais passagens...
Etapa 1.1.1
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.2
Subtraia de .
Etapa 1.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.2.1
Fatore de .
Etapa 1.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.2.1
Fatore de .
Etapa 1.2.2.2
Cancele o fator comum.
Etapa 1.2.2.3
Reescreva a expressão.
Etapa 1.2.2.4
Divida por .
Etapa 2
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 2.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 2.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 2.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 2.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 2.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.3.2
Avalie o limite de substituindo por .
Etapa 2.1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 2.1.3.3.1
Multiplique por .
Etapa 2.1.3.3.2
Subtraia de .
Etapa 2.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 2.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 2.3.1
Diferencie o numerador e o denominador.
Etapa 2.3.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.6
Some e .
Etapa 2.4
Divida por .
Etapa 3
Avalie o limite de , que é constante à medida que se aproxima de .