Cálculo Exemplos

Ermittle die 2nd-Ableitung f(x)=ax^2+bx+c
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Mova para a esquerda de .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.5
Simplifique.
Toque para ver mais passagens...
Etapa 1.5.1
Some e .
Etapa 1.5.2
Reordene os termos.
Etapa 2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Some e .
Etapa 3
Como é constante em relação a , a derivada de em relação a é .
Etapa 4
Como é constante em relação a , a derivada de em relação a é .
Etapa 5
A quarta derivada de com relação a é .