Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.3
Diferencie.
Etapa 1.3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4
Some e .
Etapa 1.4
Multiplique por somando os expoentes.
Etapa 1.4.1
Mova .
Etapa 1.4.2
Multiplique por .
Etapa 1.4.2.1
Eleve à potência de .
Etapa 1.4.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.4.3
Some e .
Etapa 1.5
Mova para a esquerda de .
Etapa 1.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.7
Mova para a esquerda de .
Etapa 1.8
Simplifique.
Etapa 1.8.1
Aplique a propriedade distributiva.
Etapa 1.8.2
Aplique a propriedade distributiva.
Etapa 1.8.3
Aplique a propriedade distributiva.
Etapa 1.8.4
Combine os termos.
Etapa 1.8.4.1
Multiplique por .
Etapa 1.8.4.2
Multiplique por somando os expoentes.
Etapa 1.8.4.2.1
Mova .
Etapa 1.8.4.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.8.4.2.3
Some e .
Etapa 1.8.4.3
Multiplique por .
Etapa 1.8.4.4
Multiplique por .
Etapa 1.8.4.5
Multiplique por .
Etapa 1.8.4.6
Some e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 3
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Avalie .
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3
Multiplique por .
Etapa 4
Etapa 4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.2
Avalie .
Etapa 4.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.2.3
Multiplique por .
Etapa 4.3
Diferencie usando a regra da constante.
Etapa 4.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.2
Some e .
Etapa 5
A quarta derivada de com relação a é .