Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Decomponha a fração e multiplique pelo denominador comum.
Etapa 1.1.1
Fatore de .
Etapa 1.1.1.1
Fatore de .
Etapa 1.1.1.2
Fatore de .
Etapa 1.1.1.3
Fatore de .
Etapa 1.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator é de 2ª ordem, os termos de são necessários no numerador. O número de termos necessários no numerador é sempre igual à ordem do fator no denominador.
Etapa 1.1.3
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator é de 2ª ordem, os termos de são necessários no numerador. O número de termos necessários no numerador é sempre igual à ordem do fator no denominador.
Etapa 1.1.4
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 1.1.5
Cancele o fator comum de .
Etapa 1.1.5.1
Cancele o fator comum.
Etapa 1.1.5.2
Divida por .
Etapa 1.1.6
Aplique a propriedade distributiva.
Etapa 1.1.7
Multiplique por .
Etapa 1.1.8
Simplifique cada termo.
Etapa 1.1.8.1
Cancele o fator comum de .
Etapa 1.1.8.1.1
Cancele o fator comum.
Etapa 1.1.8.1.2
Divida por .
Etapa 1.1.8.2
Cancele o fator comum de e .
Etapa 1.1.8.2.1
Fatore de .
Etapa 1.1.8.2.2
Cancele os fatores comuns.
Etapa 1.1.8.2.2.1
Multiplique por .
Etapa 1.1.8.2.2.2
Cancele o fator comum.
Etapa 1.1.8.2.2.3
Reescreva a expressão.
Etapa 1.1.8.2.2.4
Divida por .
Etapa 1.1.8.3
Expanda multiplicando cada termo na primeira expressão por cada um dos termos na segunda expressão.
Etapa 1.1.8.4
Simplifique cada termo.
Etapa 1.1.8.4.1
Multiplique por somando os expoentes.
Etapa 1.1.8.4.1.1
Mova .
Etapa 1.1.8.4.1.2
Multiplique por .
Etapa 1.1.8.4.1.2.1
Eleve à potência de .
Etapa 1.1.8.4.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.8.4.1.3
Some e .
Etapa 1.1.8.4.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.8.4.3
Multiplique por somando os expoentes.
Etapa 1.1.8.4.3.1
Mova .
Etapa 1.1.8.4.3.2
Multiplique por .
Etapa 1.1.8.4.4
Mova para a esquerda de .
Etapa 1.1.8.4.5
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.8.4.6
Mova para a esquerda de .
Etapa 1.1.9
Simplifique a expressão.
Etapa 1.1.9.1
Mova .
Etapa 1.1.9.2
Mova .
Etapa 1.1.9.3
Mova .
Etapa 1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Etapa 1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.3
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.4
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.5
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 1.3
Resolva o sistema de equações.
Etapa 1.3.1
Reescreva a equação como .
Etapa 1.3.2
Substitua todas as ocorrências de por em cada equação.
Etapa 1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 1.3.2.2
Simplifique o lado direito.
Etapa 1.3.2.2.1
Simplifique .
Etapa 1.3.2.2.1.1
Multiplique por .
Etapa 1.3.2.2.1.2
Some e .
Etapa 1.3.2.3
Substitua todas as ocorrências de em por .
Etapa 1.3.2.4
Simplifique o lado direito.
Etapa 1.3.2.4.1
Simplifique .
Etapa 1.3.2.4.1.1
Multiplique por .
Etapa 1.3.2.4.1.2
Some e .
Etapa 1.3.3
Reescreva a equação como .
Etapa 1.3.4
Substitua todas as ocorrências de por em cada equação.
Etapa 1.3.4.1
Substitua todas as ocorrências de em por .
Etapa 1.3.4.2
Simplifique o lado direito.
Etapa 1.3.4.2.1
Simplifique .
Etapa 1.3.4.2.1.1
Multiplique por .
Etapa 1.3.4.2.1.2
Some e .
Etapa 1.3.4.3
Substitua todas as ocorrências de em por .
Etapa 1.3.4.4
Simplifique o lado direito.
Etapa 1.3.4.4.1
Simplifique .
Etapa 1.3.4.4.1.1
Multiplique por .
Etapa 1.3.4.4.1.2
Some e .
Etapa 1.3.5
Reescreva a equação como .
Etapa 1.3.6
Reescreva a equação como .
Etapa 1.3.7
Liste todas as soluções.
Etapa 1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para , , e .
Etapa 1.5
Simplifique.
Etapa 1.5.1
Fatore de .
Etapa 1.5.1.1
Fatore de .
Etapa 1.5.1.2
Fatore de .
Etapa 1.5.1.3
Fatore de .
Etapa 1.5.2
Simplifique o numerador.
Etapa 1.5.2.1
Multiplique por .
Etapa 1.5.2.2
Some e .
Etapa 1.5.3
Divida por .
Etapa 1.5.4
Remova o zero da expressão.
Etapa 2
Como é constante com relação a , mova para fora da integral.
Etapa 3
Etapa 3.1
Deixe . Encontre .
Etapa 3.1.1
Diferencie .
Etapa 3.1.2
Diferencie.
Etapa 3.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.1.3
Avalie .
Etapa 3.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.1.3.3
Multiplique por .
Etapa 3.1.4
Diferencie usando a regra da constante.
Etapa 3.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.1.4.2
Some e .
Etapa 3.2
Reescreva o problema usando e .
Etapa 4
Etapa 4.1
Multiplique por .
Etapa 4.2
Mova para a esquerda de .
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
Etapa 6.1
Combine e .
Etapa 6.2
Aplique regras básicas de expoentes.
Etapa 6.2.1
Mova para fora do denominador, elevando-o à potência.
Etapa 6.2.2
Multiplique os expoentes em .
Etapa 6.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.2.2.2
Multiplique por .
Etapa 7
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 8
Etapa 8.1
Reescreva como .
Etapa 8.2
Multiplique por .
Etapa 9
Substitua todas as ocorrências de por .