Cálculo Exemplos

Avalie a Integral integral de (2x+4)/(x^3-2x^2) com relação a x
Etapa 1
Escreva a fração usando a decomposição da fração parcial.
Toque para ver mais passagens...
Etapa 1.1
Decomponha a fração e multiplique pelo denominador comum.
Toque para ver mais passagens...
Etapa 1.1.1
Fatore a fração.
Toque para ver mais passagens...
Etapa 1.1.1.1
Fatore de .
Toque para ver mais passagens...
Etapa 1.1.1.1.1
Fatore de .
Etapa 1.1.1.1.2
Fatore de .
Etapa 1.1.1.1.3
Fatore de .
Etapa 1.1.1.2
Fatore de .
Toque para ver mais passagens...
Etapa 1.1.1.2.1
Fatore de .
Etapa 1.1.1.2.2
Fatore de .
Etapa 1.1.1.2.3
Fatore de .
Etapa 1.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.3
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 1.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.4.1
Cancele o fator comum.
Etapa 1.1.4.2
Reescreva a expressão.
Etapa 1.1.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.5.1
Cancele o fator comum.
Etapa 1.1.5.2
Divida por .
Etapa 1.1.6
Aplique a propriedade distributiva.
Etapa 1.1.7
Multiplique por .
Etapa 1.1.8
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.8.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.8.1.1
Cancele o fator comum.
Etapa 1.1.8.1.2
Divida por .
Etapa 1.1.8.2
Aplique a propriedade distributiva.
Etapa 1.1.8.3
Mova para a esquerda de .
Etapa 1.1.8.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.1.8.4.1
Fatore de .
Etapa 1.1.8.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.8.4.2.1
Eleve à potência de .
Etapa 1.1.8.4.2.2
Fatore de .
Etapa 1.1.8.4.2.3
Cancele o fator comum.
Etapa 1.1.8.4.2.4
Reescreva a expressão.
Etapa 1.1.8.4.2.5
Divida por .
Etapa 1.1.8.5
Aplique a propriedade distributiva.
Etapa 1.1.8.6
Multiplique por .
Etapa 1.1.8.7
Mova para a esquerda de .
Etapa 1.1.8.8
Aplique a propriedade distributiva.
Etapa 1.1.8.9
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.8.10
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.8.10.1
Cancele o fator comum.
Etapa 1.1.8.10.2
Divida por .
Etapa 1.1.9
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.9.1
Mova .
Etapa 1.1.9.2
Mova .
Etapa 1.1.9.3
Mova .
Etapa 1.1.9.4
Mova .
Etapa 1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Toque para ver mais passagens...
Etapa 1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.3
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.4
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 1.3
Resolva o sistema de equações.
Toque para ver mais passagens...
Etapa 1.3.1
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.1.1
Reescreva a equação como .
Etapa 1.3.1.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.1.2.1
Divida cada termo em por .
Etapa 1.3.1.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.1.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.1.2.2.1.1
Cancele o fator comum.
Etapa 1.3.1.2.2.1.2
Divida por .
Etapa 1.3.1.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.1.2.3.1
Divida por .
Etapa 1.3.2
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 1.3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.2.1
Remova os parênteses.
Etapa 1.3.3
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.3.1
Reescreva a equação como .
Etapa 1.3.3.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.3.2.1
Some aos dois lados da equação.
Etapa 1.3.3.2.2
Some e .
Etapa 1.3.3.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.3.3.1
Divida cada termo em por .
Etapa 1.3.3.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.3.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.3.3.2.1.1
Cancele o fator comum.
Etapa 1.3.3.3.2.1.2
Divida por .
Etapa 1.3.3.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.3.3.3.1
Divida por .
Etapa 1.3.4
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.4.1
Substitua todas as ocorrências de em por .
Etapa 1.3.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.4.2.1
Remova os parênteses.
Etapa 1.3.5
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.5.1
Reescreva a equação como .
Etapa 1.3.5.2
Some aos dois lados da equação.
Etapa 1.3.6
Resolva o sistema de equações.
Etapa 1.3.7
Liste todas as soluções.
Etapa 1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para , e .
Etapa 1.5
Simplifique.
Toque para ver mais passagens...
Etapa 1.5.1
Mova o número negativo para a frente da fração.
Etapa 1.5.2
Mova o número negativo para a frente da fração.
Etapa 2
Divida a integral única em várias integrais.
Etapa 3
Como é constante com relação a , mova para fora da integral.
Etapa 4
Como é constante com relação a , mova para fora da integral.
Etapa 5
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 5.1
Multiplique por .
Etapa 5.2
Mova para fora do denominador, elevando-o à potência.
Etapa 5.3
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 5.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.3.2
Multiplique por .
Etapa 6
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
Multiplique por .
Etapa 10
A integral de com relação a é .
Etapa 11
Como é constante com relação a , mova para fora da integral.
Etapa 12
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 12.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 12.1.1
Diferencie .
Etapa 12.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 12.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 12.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.1.5
Some e .
Etapa 12.2
Reescreva o problema usando e .
Etapa 13
A integral de com relação a é .
Etapa 14
Simplifique.
Etapa 15
Substitua todas as ocorrências de por .