Cálculo Exemplos

Encontre o Máximo e Mínimo Local e^(1-20x+5x^2)
Etapa 1
Escreva como uma função.
Etapa 2
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Etapa 2.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 2.1.3
Substitua todas as ocorrências de por .
Etapa 2.2
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.3
Some e .
Etapa 2.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.6
Multiplique por .
Etapa 2.2.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.9
Multiplique por .
Etapa 3
Encontre a segunda derivada da função.
Toque para ver mais passagens...
Etapa 3.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 3.2
Diferencie.
Toque para ver mais passagens...
Etapa 3.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.3
Some e .
Etapa 3.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.6
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 3.2.6.1
Multiplique por .
Etapa 3.2.6.2
Mova para a esquerda de .
Etapa 3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 3.3.3
Substitua todas as ocorrências de por .
Etapa 3.4
Diferencie.
Toque para ver mais passagens...
Etapa 3.4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.4.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.3
Some e .
Etapa 3.4.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4.6
Multiplique por .
Etapa 3.4.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4.9
Multiplique por .
Etapa 3.5
Eleve à potência de .
Etapa 3.6
Eleve à potência de .
Etapa 3.7
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.8
Some e .
Etapa 3.9
Reordene os termos.
Etapa 4
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 5
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 5.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 5.1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 5.1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 5.1.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 5.1.1.3
Substitua todas as ocorrências de por .
Etapa 5.1.2
Diferencie.
Toque para ver mais passagens...
Etapa 5.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 5.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.2.3
Some e .
Etapa 5.1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.2.6
Multiplique por .
Etapa 5.1.2.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.2.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.2.9
Multiplique por .
Etapa 5.2
A primeira derivada de com relação a é .
Etapa 6
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 6.1
Defina a primeira derivada como igual a .
Etapa 6.2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 6.3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 6.3.1
Defina como igual a .
Etapa 6.3.2
Resolva para .
Toque para ver mais passagens...
Etapa 6.3.2.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 6.3.2.2
Não é possível resolver a equação, porque é indefinida.
Indefinido
Etapa 6.3.2.3
Não há uma solução para
Nenhuma solução
Nenhuma solução
Nenhuma solução
Etapa 6.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 6.4.1
Defina como igual a .
Etapa 6.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 6.4.2.1
Some aos dois lados da equação.
Etapa 6.4.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.4.2.2.1
Divida cada termo em por .
Etapa 6.4.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.4.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.4.2.2.2.1.1
Cancele o fator comum.
Etapa 6.4.2.2.2.1.2
Divida por .
Etapa 6.4.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.4.2.2.3.1
Divida por .
Etapa 6.5
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 7.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 8
Pontos críticos para avaliar.
Etapa 9
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 10
Avalie a segunda derivada.
Toque para ver mais passagens...
Etapa 10.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.1.1.1
Multiplique por .
Etapa 10.1.1.2
Eleve à potência de .
Etapa 10.1.1.3
Multiplique por .
Etapa 10.1.2
Subtraia de .
Etapa 10.1.3
Some e .
Etapa 10.1.4
Reescreva a expressão usando a regra do expoente negativo .
Etapa 10.1.5
Multiplique por .
Etapa 10.1.6
Some e .
Etapa 10.1.7
Elevar a qualquer potência positiva produz .
Etapa 10.1.8
Multiplique por .
Etapa 10.1.9
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 10.1.9.1
Multiplique por .
Etapa 10.1.9.2
Eleve à potência de .
Etapa 10.1.9.3
Multiplique por .
Etapa 10.1.10
Subtraia de .
Etapa 10.1.11
Some e .
Etapa 10.1.12
Reescreva a expressão usando a regra do expoente negativo .
Etapa 10.1.13
Combine e .
Etapa 10.2
Some e .
Etapa 11
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 12
Encontre o valor y quando .
Toque para ver mais passagens...
Etapa 12.1
Substitua a variável por na expressão.
Etapa 12.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 12.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 12.2.1.1
Multiplique por .
Etapa 12.2.1.2
Eleve à potência de .
Etapa 12.2.1.3
Multiplique por .
Etapa 12.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 12.2.2.1
Subtraia de .
Etapa 12.2.2.2
Some e .
Etapa 12.2.3
Reescreva a expressão usando a regra do expoente negativo .
Etapa 12.2.4
A resposta final é .
Etapa 13
Esses são os extremos locais para .
é um mínimo local
Etapa 14