Cálculo Exemplos

Resolve a equação diferencial (dy)/(dx)=(x(y^2+1)^4)/(y(x+2))
Etapa 1
Separe as variáveis.
Toque para ver mais passagens...
Etapa 1.1
Reagrupe os fatores.
Etapa 1.2
Multiplique os dois lados por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Multiplique por .
Etapa 1.3.2
Combine.
Etapa 1.3.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.3.1
Cancele o fator comum.
Etapa 1.3.3.2
Reescreva a expressão.
Etapa 1.3.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.4.1
Cancele o fator comum.
Etapa 1.3.4.2
Reescreva a expressão.
Etapa 1.4
Reescreva a equação.
Etapa 2
Integre os dois lados.
Toque para ver mais passagens...
Etapa 2.1
Determine uma integral de cada lado.
Etapa 2.2
Integre o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.2.1.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Diferencie .
Etapa 2.2.1.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.1.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.1.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.1.1.5
Some e .
Etapa 2.2.1.2
Reescreva o problema usando e .
Etapa 2.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.2.1
Multiplique por .
Etapa 2.2.2.2
Mova para a esquerda de .
Etapa 2.2.3
Como é constante com relação a , mova para fora da integral.
Etapa 2.2.4
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.2.4.1
Mova para fora do denominador, elevando-o à potência.
Etapa 2.2.4.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.2.4.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.4.2.2
Multiplique por .
Etapa 2.2.5
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 2.2.6
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.6.1
Reescreva como .
Etapa 2.2.6.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.6.2.1
Multiplique por .
Etapa 2.2.6.2.2
Mova para a esquerda de .
Etapa 2.2.6.2.3
Multiplique por .
Etapa 2.2.6.2.4
Multiplique por .
Etapa 2.2.7
Substitua todas as ocorrências de por .
Etapa 2.3
Integre o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Divida por .
Toque para ver mais passagens...
Etapa 2.3.1.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
++
Etapa 2.3.1.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
++
Etapa 2.3.1.3
Multiplique o novo termo do quociente pelo divisor.
++
++
Etapa 2.3.1.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
++
--
Etapa 2.3.1.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
++
--
-
Etapa 2.3.1.6
A resposta final é o quociente mais o resto sobre o divisor.
Etapa 2.3.2
Divida a integral única em várias integrais.
Etapa 2.3.3
Aplique a regra da constante.
Etapa 2.3.4
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.5
Como é constante com relação a , mova para fora da integral.
Etapa 2.3.6
Multiplique por .
Etapa 2.3.7
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 2.3.7.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 2.3.7.1.1
Diferencie .
Etapa 2.3.7.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.7.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.7.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.7.1.5
Some e .
Etapa 2.3.7.2
Reescreva o problema usando e .
Etapa 2.3.8
A integral de com relação a é .
Etapa 2.3.9
Simplifique.
Etapa 2.3.10
Substitua todas as ocorrências de por .
Etapa 2.4
Agrupe a constante de integração no lado direito como .