Cálculo Exemplos

Avalie o Limite limite à medida que x aproxima -3 de (x^2+6x+9)/(2-2cos(2x+6))
Etapa 1
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 1.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.2.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.5
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 1.1.2.5.1
Avalie o limite de substituindo por .
Etapa 1.1.2.5.2
Avalie o limite de substituindo por .
Etapa 1.1.2.6
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.2.6.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.2.6.1.1
Eleve à potência de .
Etapa 1.1.2.6.1.2
Multiplique por .
Etapa 1.1.2.6.2
Subtraia de .
Etapa 1.1.2.6.3
Some e .
Etapa 1.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 1.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.1.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.3.1.4
Mova o limite dentro da função trigonométrica, pois o cosseno é contínuo.
Etapa 1.1.3.1.5
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.6
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.3.1.7
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 1.1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.3.3.1.1
Multiplique por .
Etapa 1.1.3.3.1.2
Some e .
Etapa 1.1.3.3.1.3
O valor exato de é .
Etapa 1.1.3.3.1.4
Multiplique por .
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4
Avalie .
Toque para ver mais passagens...
Etapa 1.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4.3
Multiplique por .
Etapa 1.3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.6
Some e .
Etapa 1.3.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9
Avalie .
Toque para ver mais passagens...
Etapa 1.3.9.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.3.9.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.9.2.2
A derivada de em relação a é .
Etapa 1.3.9.2.3
Substitua todas as ocorrências de por .
Etapa 1.3.9.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.9.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.9.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.9.7
Multiplique por .
Etapa 1.3.9.8
Some e .
Etapa 1.3.9.9
Multiplique por .
Etapa 1.3.9.10
Multiplique por .
Etapa 1.3.10
Some e .
Etapa 1.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.4.1
Fatore de .
Etapa 1.4.2
Fatore de .
Etapa 1.4.3
Fatore de .
Etapa 1.4.4
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.4.4.1
Fatore de .
Etapa 1.4.4.2
Cancele o fator comum.
Etapa 1.4.4.3
Reescreva a expressão.
Etapa 2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 3.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 3.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 3.1.2
Avalie o limite do numerador.
Toque para ver mais passagens...
Etapa 3.1.2.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 3.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.1.2.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.1.2.2
Avalie o limite de substituindo por .
Etapa 3.1.2.3
Some e .
Etapa 3.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 3.1.3.1
Avalie o limite.
Toque para ver mais passagens...
Etapa 3.1.3.1.1
Mova o limite dentro da função trigonométrica, pois o seno é contínuo.
Etapa 3.1.3.1.2
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.1.3.1.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.1.3.1.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.1.3.2
Avalie o limite de substituindo por .
Etapa 3.1.3.3
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 3.1.3.3.1
Multiplique por .
Etapa 3.1.3.3.2
Some e .
Etapa 3.1.3.3.3
O valor exato de é .
Etapa 3.1.3.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 3.3.1
Diferencie o numerador e o denominador.
Etapa 3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.5
Some e .
Etapa 3.3.6
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 3.3.6.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.6.2
A derivada de em relação a é .
Etapa 3.3.6.3
Substitua todas as ocorrências de por .
Etapa 3.3.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.10
Multiplique por .
Etapa 3.3.11
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.12
Some e .
Etapa 3.3.13
Mova para a esquerda de .
Etapa 4
Avalie o limite.
Toque para ver mais passagens...
Etapa 4.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 4.2
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 4.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 4.4
Mova o limite dentro da função trigonométrica, pois o cosseno é contínuo.
Etapa 4.5
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 4.6
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 4.7
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 5
Avalie o limite de substituindo por .
Etapa 6
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 6.1
Multiplique .
Toque para ver mais passagens...
Etapa 6.1.1
Multiplique por .
Etapa 6.1.2
Multiplique por .
Etapa 6.2
Converta de em .
Etapa 6.3
Multiplique por .
Etapa 6.4
Some e .
Etapa 6.5
O valor exato de é .
Etapa 6.6
Multiplique por .
Etapa 7
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: