Álgebra Exemplos

Löse nach x auf 72x^4-74x^2+14=0
Etapa 1
Substitua na equação. A fórmula quadrática ficará mais fácil de usar.
Etapa 2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.1
Fatore de .
Toque para ver mais passagens...
Etapa 2.1.1
Fatore de .
Etapa 2.1.2
Fatore de .
Etapa 2.1.3
Fatore de .
Etapa 2.1.4
Fatore de .
Etapa 2.1.5
Fatore de .
Etapa 2.2
Fatore.
Toque para ver mais passagens...
Etapa 2.2.1
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 2.2.1.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Fatore de .
Etapa 2.2.1.1.2
Reescreva como mais
Etapa 2.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.2.1.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 2.2.1.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.2.1.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.2.1.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 2.2.2
Remova os parênteses desnecessários.
Etapa 3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.1
Defina como igual a .
Etapa 4.2
Resolva para .
Toque para ver mais passagens...
Etapa 4.2.1
Some aos dois lados da equação.
Etapa 4.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.2.2.1
Divida cada termo em por .
Etapa 4.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.2.1.1
Cancele o fator comum.
Etapa 4.2.2.2.1.2
Divida por .
Etapa 5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.1
Defina como igual a .
Etapa 5.2
Resolva para .
Toque para ver mais passagens...
Etapa 5.2.1
Some aos dois lados da equação.
Etapa 5.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.2.2.1
Divida cada termo em por .
Etapa 5.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.2.2.2.1.1
Cancele o fator comum.
Etapa 5.2.2.2.1.2
Divida por .
Etapa 6
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Substitua o valor real de de volta na equação resolvida.
Etapa 8
Resolva a primeira equação para .
Etapa 9
Resolva a equação para .
Toque para ver mais passagens...
Etapa 9.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 9.2
Simplifique .
Toque para ver mais passagens...
Etapa 9.2.1
Reescreva como .
Etapa 9.2.2
Qualquer raiz de é .
Etapa 9.2.3
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 9.2.3.1
Reescreva como .
Etapa 9.2.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 9.3
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 9.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 9.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 9.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 10
Resolva a segunda equação para .
Etapa 11
Resolva a equação para .
Toque para ver mais passagens...
Etapa 11.1
Remova os parênteses.
Etapa 11.2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 11.3
Simplifique .
Toque para ver mais passagens...
Etapa 11.3.1
Reescreva como .
Etapa 11.3.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 11.3.2.1
Reescreva como .
Etapa 11.3.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 11.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 11.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 11.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 11.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 12
A solução para é .
Etapa 13
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: