Álgebra Exemplos

Representa a função num gráfico cartesiano g(x)=-3/2(x-2)^2
Etapa 1
Encontre as propriedades da parábola em questão.
Toque para ver mais passagens...
Etapa 1.1
Isole no lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 1.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.1.1.1
Combine e .
Etapa 1.1.1.2
Mova para a esquerda de .
Etapa 1.1.2
Reordene os termos.
Etapa 1.2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 1.3
Como o valor de é negativo, a parábola abre para baixo.
Abre para baixo
Etapa 1.4
Encontre o vértice .
Etapa 1.5
Encontre , a distância do vértice até o foco.
Toque para ver mais passagens...
Etapa 1.5.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 1.5.2
Substitua o valor de na fórmula.
Etapa 1.5.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.5.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.5.3.1.1
Reescreva como .
Etapa 1.5.3.1.2
Mova o número negativo para a frente da fração.
Etapa 1.5.3.2
Combine e .
Etapa 1.5.3.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.5.3.3.1
Multiplique por .
Etapa 1.5.3.3.2
Divida por .
Etapa 1.6
Encontre o foco.
Toque para ver mais passagens...
Etapa 1.6.1
O foco de uma parábola pode ser encontrado ao somar com a coordenada y , se a parábola abrir para cima ou para baixo.
Etapa 1.6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 1.7
Para encontrar o eixo de simetria, encontre a reta que passa pelo vértice e o foco.
Etapa 1.8
Encontre a diretriz.
Toque para ver mais passagens...
Etapa 1.8.1
A diretriz de uma parábola é a reta horizontal encontrada ao subtrair da coordenada y do vértice se a parábola abrir para cima ou para baixo.
Etapa 1.8.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 1.9
Use as propriedades da parábola para analisá-la e representá-la graficamente.
Direção: abre para baixo
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Direção: abre para baixo
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 2
Selecione alguns valores de e substitua-os na equação para encontrar os valores correspondentes de . Os valores de devem ser selecionados em torno do vértice.
Toque para ver mais passagens...
Etapa 2.1
Substitua a variável por na expressão.
Etapa 2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 2.2.1.2
Multiplique por .
Etapa 2.2.1.3
Divida por .
Etapa 2.2.1.4
Multiplique por .
Etapa 2.2.1.5
Multiplique por .
Etapa 2.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 2.2.2.1
Some e .
Etapa 2.2.2.2
Subtraia de .
Etapa 2.2.3
A resposta final é .
Etapa 2.3
O valor em é .
Etapa 2.4
Substitua a variável por na expressão.
Etapa 2.5
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 2.5.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.5.1.1
Um elevado a qualquer potência é um.
Etapa 2.5.1.2
Multiplique por .
Etapa 2.5.1.3
Multiplique por .
Etapa 2.5.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 2.5.2.1
Escreva como uma fração com denominador .
Etapa 2.5.2.2
Multiplique por .
Etapa 2.5.2.3
Multiplique por .
Etapa 2.5.2.4
Escreva como uma fração com denominador .
Etapa 2.5.2.5
Multiplique por .
Etapa 2.5.2.6
Multiplique por .
Etapa 2.5.3
Combine os numeradores em relação ao denominador comum.
Etapa 2.5.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.5.4.1
Multiplique por .
Etapa 2.5.4.2
Multiplique por .
Etapa 2.5.5
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.5.5.1
Some e .
Etapa 2.5.5.2
Subtraia de .
Etapa 2.5.5.3
Mova o número negativo para a frente da fração.
Etapa 2.5.6
A resposta final é .
Etapa 2.6
O valor em é .
Etapa 2.7
Substitua a variável por na expressão.
Etapa 2.8
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 2.8.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.8.1.1
Eleve à potência de .
Etapa 2.8.1.2
Multiplique por .
Etapa 2.8.1.3
Divida por .
Etapa 2.8.1.4
Multiplique por .
Etapa 2.8.1.5
Multiplique por .
Etapa 2.8.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 2.8.2.1
Some e .
Etapa 2.8.2.2
Subtraia de .
Etapa 2.8.3
A resposta final é .
Etapa 2.9
O valor em é .
Etapa 2.10
Substitua a variável por na expressão.
Etapa 2.11
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 2.11.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.11.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.11.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 2.11.1.1.1.1
Eleve à potência de .
Etapa 2.11.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.11.1.1.2
Some e .
Etapa 2.11.1.2
Eleve à potência de .
Etapa 2.11.1.3
Multiplique por .
Etapa 2.11.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 2.11.2.1
Escreva como uma fração com denominador .
Etapa 2.11.2.2
Multiplique por .
Etapa 2.11.2.3
Multiplique por .
Etapa 2.11.2.4
Escreva como uma fração com denominador .
Etapa 2.11.2.5
Multiplique por .
Etapa 2.11.2.6
Multiplique por .
Etapa 2.11.3
Combine os numeradores em relação ao denominador comum.
Etapa 2.11.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.11.4.1
Multiplique por .
Etapa 2.11.4.2
Multiplique por .
Etapa 2.11.5
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.11.5.1
Some e .
Etapa 2.11.5.2
Subtraia de .
Etapa 2.11.5.3
Mova o número negativo para a frente da fração.
Etapa 2.11.6
A resposta final é .
Etapa 2.12
O valor em é .
Etapa 2.13
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Etapa 3
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Direção: abre para baixo
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 4