Insira um problema...
Álgebra Exemplos
Etapa 1
Determine se a função é ímpar, par ou nenhum dos dois para encontrar a simetria.
1. Se ímpar, a função será simétrica em relação à origem.
2. Se par, a função será simétrica em relação ao eixo y.
Etapa 2
Etapa 2.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 2.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 3
Etapa 3.1
Encontre substituindo por todas as ocorrências de em .
Etapa 3.2
Fatore de .
Etapa 3.3
Reescreva como .
Etapa 3.4
Fatore de .
Etapa 3.5
Reescreva como .
Etapa 3.6
Fatore de .
Etapa 3.7
Reescreva como .
Etapa 3.8
Fatore de .
Etapa 3.9
Simplifique a expressão.
Etapa 3.9.1
Reescreva como .
Etapa 3.9.2
Multiplique por .
Etapa 3.9.3
Multiplique por .
Etapa 4
Etapa 4.1
Verifique se .
Etapa 4.2
Como , a função não é par.
A função não é par
A função não é par
Etapa 5
Etapa 5.1
Multiplique por .
Etapa 5.2
Como , a função não é ímpar.
A função não é ímpar
A função não é ímpar
Etapa 6
A função não é ímpar nem par
Etapa 7
Como a função não é ímpar, ela não é simétrica em relação à origem.
Nenhuma simetria de origem
Etapa 8
Como a função não é par, ela não é simétrica em relação ao eixo y.
Não há simetria do eixo y
Etapa 9
Como a função não é ímpar nem par, não há simetria em relação à origem/ao eixo y.
A função não é simétrica
Etapa 10