Insira um problema...
Álgebra Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
Etapa 2.1
Diferencie.
Etapa 2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Avalie .
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.3
Multiplique por .
Etapa 2.5
Diferencie usando a regra da constante.
Etapa 2.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5.2
Some e .
Etapa 3
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Avalie .
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3
Multiplique por .
Etapa 3.4
Avalie .
Etapa 3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4.3
Multiplique por .
Etapa 3.5
Diferencie usando a regra da constante.
Etapa 3.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.5.2
Some e .
Etapa 4
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 5
Etapa 5.1
Encontre a primeira derivada.
Etapa 5.1.1
Diferencie.
Etapa 5.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 5.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.2
Avalie .
Etapa 5.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.2.3
Multiplique por .
Etapa 5.1.3
Avalie .
Etapa 5.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.3.3
Multiplique por .
Etapa 5.1.4
Avalie .
Etapa 5.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.4.3
Multiplique por .
Etapa 5.1.5
Diferencie usando a regra da constante.
Etapa 5.1.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.5.2
Some e .
Etapa 5.2
A primeira derivada de com relação a é .
Etapa 6
Etapa 6.1
Defina a primeira derivada como igual a .
Etapa 6.2
Fatore o lado esquerdo da equação.
Etapa 6.2.1
Fatore de .
Etapa 6.2.1.1
Fatore de .
Etapa 6.2.1.2
Fatore de .
Etapa 6.2.1.3
Fatore de .
Etapa 6.2.1.4
Fatore de .
Etapa 6.2.1.5
Fatore de .
Etapa 6.2.1.6
Fatore de .
Etapa 6.2.1.7
Fatore de .
Etapa 6.2.2
Fatore usando o teste das raízes racionais.
Etapa 6.2.2.1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 6.2.2.2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 6.2.2.3
Substitua e simplifique a expressão. Nesse caso, a expressão é igual a . Portanto, é uma raiz do polinômio.
Etapa 6.2.2.3.1
Substitua no polinômio.
Etapa 6.2.2.3.2
Eleve à potência de .
Etapa 6.2.2.3.3
Eleve à potência de .
Etapa 6.2.2.3.4
Multiplique por .
Etapa 6.2.2.3.5
Subtraia de .
Etapa 6.2.2.3.6
Multiplique por .
Etapa 6.2.2.3.7
Some e .
Etapa 6.2.2.3.8
Subtraia de .
Etapa 6.2.2.4
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio pode ser usado para encontrar as raízes restantes.
Etapa 6.2.2.5
Divida por .
Etapa 6.2.2.5.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
| - | - | + | - |
Etapa 6.2.2.5.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
| - | - | + | - |
Etapa 6.2.2.5.3
Multiplique o novo termo do quociente pelo divisor.
| - | - | + | - | ||||||||
| + | - |
Etapa 6.2.2.5.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
| - | - | + | - | ||||||||
| - | + |
Etapa 6.2.2.5.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - |
Etapa 6.2.2.5.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + |
Etapa 6.2.2.5.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + |
Etapa 6.2.2.5.8
Multiplique o novo termo do quociente pelo divisor.
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| - | + |
Etapa 6.2.2.5.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - |
Etapa 6.2.2.5.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + |
Etapa 6.2.2.5.11
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
| - | |||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - |
Etapa 6.2.2.5.12
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - |
Etapa 6.2.2.5.13
Multiplique o novo termo do quociente pelo divisor.
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - | ||||||||||
| + | - |
Etapa 6.2.2.5.14
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - | ||||||||||
| - | + |
Etapa 6.2.2.5.15
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
| - | + | ||||||||||
| - | - | + | - | ||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
Etapa 6.2.2.5.16
Já que o resto é , a resposta final é o quociente.
Etapa 6.2.2.6
Escreva como um conjunto de fatores.
Etapa 6.2.3
Fatore.
Etapa 6.2.3.1
Fatore usando o método AC.
Etapa 6.2.3.1.1
Fatore usando o método AC.
Etapa 6.2.3.1.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 6.2.3.1.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 6.2.3.1.2
Remova os parênteses desnecessários.
Etapa 6.2.3.2
Remova os parênteses desnecessários.
Etapa 6.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 6.4
Defina como igual a e resolva para .
Etapa 6.4.1
Defina como igual a .
Etapa 6.4.2
Some aos dois lados da equação.
Etapa 6.5
Defina como igual a e resolva para .
Etapa 6.5.1
Defina como igual a .
Etapa 6.5.2
Some aos dois lados da equação.
Etapa 6.6
Defina como igual a e resolva para .
Etapa 6.6.1
Defina como igual a .
Etapa 6.6.2
Some aos dois lados da equação.
Etapa 6.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Etapa 7.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 8
Pontos críticos para avaliar.
Etapa 9
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 10
Etapa 10.1
Simplifique cada termo.
Etapa 10.1.1
Eleve à potência de .
Etapa 10.1.2
Multiplique por .
Etapa 10.1.3
Multiplique por .
Etapa 10.2
Simplifique somando e subtraindo.
Etapa 10.2.1
Subtraia de .
Etapa 10.2.2
Some e .
Etapa 11
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 12
Etapa 12.1
Substitua a variável por na expressão.
Etapa 12.2
Simplifique o resultado.
Etapa 12.2.1
Simplifique cada termo.
Etapa 12.2.1.1
Eleve à potência de .
Etapa 12.2.1.2
Eleve à potência de .
Etapa 12.2.1.3
Multiplique por .
Etapa 12.2.1.4
Eleve à potência de .
Etapa 12.2.1.5
Multiplique por .
Etapa 12.2.1.6
Multiplique por .
Etapa 12.2.2
Simplifique somando e subtraindo.
Etapa 12.2.2.1
Subtraia de .
Etapa 12.2.2.2
Some e .
Etapa 12.2.2.3
Subtraia de .
Etapa 12.2.2.4
Some e .
Etapa 12.2.3
A resposta final é .
Etapa 13
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 14
Etapa 14.1
Simplifique cada termo.
Etapa 14.1.1
Eleve à potência de .
Etapa 14.1.2
Multiplique por .
Etapa 14.1.3
Multiplique por .
Etapa 14.2
Simplifique somando e subtraindo.
Etapa 14.2.1
Subtraia de .
Etapa 14.2.2
Some e .
Etapa 15
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 16
Etapa 16.1
Substitua a variável por na expressão.
Etapa 16.2
Simplifique o resultado.
Etapa 16.2.1
Simplifique cada termo.
Etapa 16.2.1.1
Eleve à potência de .
Etapa 16.2.1.2
Eleve à potência de .
Etapa 16.2.1.3
Multiplique por .
Etapa 16.2.1.4
Eleve à potência de .
Etapa 16.2.1.5
Multiplique por .
Etapa 16.2.1.6
Multiplique por .
Etapa 16.2.2
Simplifique somando e subtraindo.
Etapa 16.2.2.1
Subtraia de .
Etapa 16.2.2.2
Some e .
Etapa 16.2.2.3
Subtraia de .
Etapa 16.2.2.4
Some e .
Etapa 16.2.3
A resposta final é .
Etapa 17
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 18
Etapa 18.1
Simplifique cada termo.
Etapa 18.1.1
Eleve à potência de .
Etapa 18.1.2
Multiplique por .
Etapa 18.1.3
Multiplique por .
Etapa 18.2
Simplifique somando e subtraindo.
Etapa 18.2.1
Subtraia de .
Etapa 18.2.2
Some e .
Etapa 19
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 20
Etapa 20.1
Substitua a variável por na expressão.
Etapa 20.2
Simplifique o resultado.
Etapa 20.2.1
Simplifique cada termo.
Etapa 20.2.1.1
Eleve à potência de .
Etapa 20.2.1.2
Eleve à potência de .
Etapa 20.2.1.3
Multiplique por .
Etapa 20.2.1.4
Eleve à potência de .
Etapa 20.2.1.5
Multiplique por .
Etapa 20.2.1.6
Multiplique por .
Etapa 20.2.2
Simplifique somando e subtraindo.
Etapa 20.2.2.1
Subtraia de .
Etapa 20.2.2.2
Some e .
Etapa 20.2.2.3
Subtraia de .
Etapa 20.2.2.4
Some e .
Etapa 20.2.3
A resposta final é .
Etapa 21
Esses são os extremos locais para .
é um mínimo local
é um mínimo local
é um máximo local
Etapa 22