Insira um problema...
Álgebra Exemplos
,
Etapa 1
Reescreva a equação como .
Etapa 2
Segundo o teorema do valor intermediário, se for uma função contínua com valor real no intervalo e for um número entre e , então haverá contido no intervalo , de forma que .
Etapa 3
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 4
Etapa 4.1
Simplifique cada termo.
Etapa 4.1.1
Elevar a qualquer potência positiva produz .
Etapa 4.1.2
Multiplique por .
Etapa 4.1.3
Multiplique por .
Etapa 4.2
Some e .
Etapa 5
Etapa 5.1
Simplifique cada termo.
Etapa 5.1.1
Eleve à potência de .
Etapa 5.1.2
Multiplique por .
Etapa 5.1.3
Multiplique por .
Etapa 5.2
Some e .
Etapa 6
Etapa 6.1
Reescreva a equação como .
Etapa 6.2
Fatore de .
Etapa 6.2.1
Fatore de .
Etapa 6.2.2
Fatore de .
Etapa 6.2.3
Fatore de .
Etapa 6.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 6.4
Defina como igual a .
Etapa 6.5
Defina como igual a e resolva para .
Etapa 6.5.1
Defina como igual a .
Etapa 6.5.2
Resolva para .
Etapa 6.5.2.1
Subtraia dos dois lados da equação.
Etapa 6.5.2.2
Divida cada termo em por e simplifique.
Etapa 6.5.2.2.1
Divida cada termo em por .
Etapa 6.5.2.2.2
Simplifique o lado esquerdo.
Etapa 6.5.2.2.2.1
Cancele o fator comum de .
Etapa 6.5.2.2.2.1.1
Cancele o fator comum.
Etapa 6.5.2.2.2.1.2
Divida por .
Etapa 6.5.2.2.3
Simplifique o lado direito.
Etapa 6.5.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 6.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Segundo o teorema do valor intermediário, existe uma raiz no intervalo , porque é uma função contínua em .
As raízes no intervalo estão localizados em .
Etapa 8