Insira um problema...
Álgebra Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
Etapa 2.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 2.1.3
Substitua todas as ocorrências de por .
Etapa 2.2
Diferencie.
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Simplifique.
Etapa 2.3.1
Reordene os fatores de .
Etapa 2.3.2
Reordene os fatores em .
Etapa 3
Etapa 3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 3.3.3
Substitua todas as ocorrências de por .
Etapa 3.4
Diferencie.
Etapa 3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4.3
Multiplique por .
Etapa 3.5
Eleve à potência de .
Etapa 3.6
Eleve à potência de .
Etapa 3.7
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.8
Simplifique a expressão.
Etapa 3.8.1
Some e .
Etapa 3.8.2
Mova para a esquerda de .
Etapa 3.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.10
Multiplique por .
Etapa 3.11
Simplifique.
Etapa 3.11.1
Aplique a propriedade distributiva.
Etapa 3.11.2
Multiplique por .
Etapa 3.11.3
Reordene os termos.
Etapa 3.11.4
Reordene os fatores em .
Etapa 4
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 5
Etapa 5.1
Encontre a primeira derivada.
Etapa 5.1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 5.1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 5.1.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 5.1.1.3
Substitua todas as ocorrências de por .
Etapa 5.1.2
Diferencie.
Etapa 5.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.2.3
Multiplique por .
Etapa 5.1.3
Simplifique.
Etapa 5.1.3.1
Reordene os fatores de .
Etapa 5.1.3.2
Reordene os fatores em .
Etapa 5.2
A primeira derivada de com relação a é .
Etapa 6
Etapa 6.1
Defina a primeira derivada como igual a .
Etapa 6.2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 6.3
Defina como igual a .
Etapa 6.4
Defina como igual a e resolva para .
Etapa 6.4.1
Defina como igual a .
Etapa 6.4.2
Resolva para .
Etapa 6.4.2.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 6.4.2.2
Não é possível resolver a equação, porque é indefinida.
Indefinido
Etapa 6.4.2.3
Não há uma solução para
Nenhuma solução
Nenhuma solução
Nenhuma solução
Etapa 6.5
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Etapa 7.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 8
Pontos críticos para avaliar.
Etapa 9
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 10
Etapa 10.1
Simplifique cada termo.
Etapa 10.1.1
Elevar a qualquer potência positiva produz .
Etapa 10.1.2
Multiplique por .
Etapa 10.1.3
Elevar a qualquer potência positiva produz .
Etapa 10.1.4
Multiplique por .
Etapa 10.1.5
Qualquer coisa elevada a é .
Etapa 10.1.6
Multiplique por .
Etapa 10.1.7
Elevar a qualquer potência positiva produz .
Etapa 10.1.8
Multiplique por .
Etapa 10.1.9
Qualquer coisa elevada a é .
Etapa 10.1.10
Multiplique por .
Etapa 10.2
Subtraia de .
Etapa 11
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 12
Etapa 12.1
Substitua a variável por na expressão.
Etapa 12.2
Simplifique o resultado.
Etapa 12.2.1
Elevar a qualquer potência positiva produz .
Etapa 12.2.2
Multiplique por .
Etapa 12.2.3
Qualquer coisa elevada a é .
Etapa 12.2.4
A resposta final é .
Etapa 13
Esses são os extremos locais para .
é um máximo local
Etapa 14