Insira um problema...
Álgebra Exemplos
Etapa 1
Subtraia dos dois lados da desigualdade.
Etapa 2
Etapa 2.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.2
Simplifique o lado esquerdo.
Etapa 2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.2.2
Divida por .
Etapa 2.3
Simplifique o lado direito.
Etapa 2.3.1
Simplifique cada termo.
Etapa 2.3.1.1
Divida por .
Etapa 2.3.1.2
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.3.1.3
Divida por .
Etapa 3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 4
Etapa 4.1
Simplifique o lado esquerdo.
Etapa 4.1.1
Elimine os termos abaixo do radical.
Etapa 4.2
Simplifique o lado direito.
Etapa 4.2.1
Simplifique .
Etapa 4.2.1.1
Simplifique a expressão.
Etapa 4.2.1.1.1
Reescreva como .
Etapa 4.2.1.1.2
Reordene e .
Etapa 4.2.1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 5
Etapa 5.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 5.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 5.3
Encontre o domínio de e a intersecção com .
Etapa 5.3.1
Encontre o domínio de .
Etapa 5.3.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 5.3.1.2
Resolva .
Etapa 5.3.1.2.1
Simplifique .
Etapa 5.3.1.2.1.1
Expanda usando o método FOIL.
Etapa 5.3.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 5.3.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 5.3.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 5.3.1.2.1.2
Simplifique os termos.
Etapa 5.3.1.2.1.2.1
Combine os termos opostos em .
Etapa 5.3.1.2.1.2.1.1
Reorganize os fatores nos termos e .
Etapa 5.3.1.2.1.2.1.2
Some e .
Etapa 5.3.1.2.1.2.1.3
Some e .
Etapa 5.3.1.2.1.2.2
Simplifique cada termo.
Etapa 5.3.1.2.1.2.2.1
Multiplique por .
Etapa 5.3.1.2.1.2.2.2
Multiplique por .
Etapa 5.3.1.2.2
Some aos dois lados da desigualdade.
Etapa 5.3.1.2.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 5.3.1.2.4
Simplifique a equação.
Etapa 5.3.1.2.4.1
Simplifique o lado esquerdo.
Etapa 5.3.1.2.4.1.1
Elimine os termos abaixo do radical.
Etapa 5.3.1.2.4.2
Simplifique o lado direito.
Etapa 5.3.1.2.4.2.1
Simplifique .
Etapa 5.3.1.2.4.2.1.1
Reescreva como .
Etapa 5.3.1.2.4.2.1.2
Elimine os termos abaixo do radical.
Etapa 5.3.1.2.4.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.3.1.2.5
Escreva em partes.
Etapa 5.3.1.2.5.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 5.3.1.2.5.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 5.3.1.2.5.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 5.3.1.2.5.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 5.3.1.2.5.5
Escreva em partes.
Etapa 5.3.1.2.6
Encontre a intersecção de e .
Etapa 5.3.1.2.7
Divida cada termo em por e simplifique.
Etapa 5.3.1.2.7.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 5.3.1.2.7.2
Simplifique o lado esquerdo.
Etapa 5.3.1.2.7.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 5.3.1.2.7.2.2
Divida por .
Etapa 5.3.1.2.7.3
Simplifique o lado direito.
Etapa 5.3.1.2.7.3.1
Divida por .
Etapa 5.3.1.2.8
Encontre a união das soluções.
ou
ou
Etapa 5.3.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 5.3.2
Encontre a intersecção de e .
Etapa 5.4
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 5.5
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 5.6
Encontre o domínio de e a intersecção com .
Etapa 5.6.1
Encontre o domínio de .
Etapa 5.6.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 5.6.1.2
Resolva .
Etapa 5.6.1.2.1
Simplifique .
Etapa 5.6.1.2.1.1
Expanda usando o método FOIL.
Etapa 5.6.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 5.6.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 5.6.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 5.6.1.2.1.2
Simplifique os termos.
Etapa 5.6.1.2.1.2.1
Combine os termos opostos em .
Etapa 5.6.1.2.1.2.1.1
Reorganize os fatores nos termos e .
Etapa 5.6.1.2.1.2.1.2
Some e .
Etapa 5.6.1.2.1.2.1.3
Some e .
Etapa 5.6.1.2.1.2.2
Simplifique cada termo.
Etapa 5.6.1.2.1.2.2.1
Multiplique por .
Etapa 5.6.1.2.1.2.2.2
Multiplique por .
Etapa 5.6.1.2.2
Some aos dois lados da desigualdade.
Etapa 5.6.1.2.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 5.6.1.2.4
Simplifique a equação.
Etapa 5.6.1.2.4.1
Simplifique o lado esquerdo.
Etapa 5.6.1.2.4.1.1
Elimine os termos abaixo do radical.
Etapa 5.6.1.2.4.2
Simplifique o lado direito.
Etapa 5.6.1.2.4.2.1
Simplifique .
Etapa 5.6.1.2.4.2.1.1
Reescreva como .
Etapa 5.6.1.2.4.2.1.2
Elimine os termos abaixo do radical.
Etapa 5.6.1.2.4.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.6.1.2.5
Escreva em partes.
Etapa 5.6.1.2.5.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 5.6.1.2.5.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 5.6.1.2.5.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 5.6.1.2.5.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 5.6.1.2.5.5
Escreva em partes.
Etapa 5.6.1.2.6
Encontre a intersecção de e .
Etapa 5.6.1.2.7
Divida cada termo em por e simplifique.
Etapa 5.6.1.2.7.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 5.6.1.2.7.2
Simplifique o lado esquerdo.
Etapa 5.6.1.2.7.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 5.6.1.2.7.2.2
Divida por .
Etapa 5.6.1.2.7.3
Simplifique o lado direito.
Etapa 5.6.1.2.7.3.1
Divida por .
Etapa 5.6.1.2.8
Encontre a união das soluções.
ou
ou
Etapa 5.6.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 5.6.2
Encontre a intersecção de e .
Etapa 5.7
Escreva em partes.
Etapa 6
Encontre a intersecção de e .
Etapa 7
Etapa 7.1
Divida cada termo em por e simplifique.
Etapa 7.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 7.1.2
Simplifique o lado esquerdo.
Etapa 7.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 7.1.2.2
Divida por .
Etapa 7.1.3
Simplifique o lado direito.
Etapa 7.1.3.1
Mova o número negativo do denominador de .
Etapa 7.1.3.2
Reescreva como .
Etapa 7.2
Encontre a intersecção de e .
Etapa 8
Encontre a união das soluções.
ou
Etapa 9