Insira um problema...
Álgebra Exemplos
Etapa 1
Etapa 1.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 1.2
Remova os parênteses.
Etapa 1.3
O MMC de um e qualquer expressão é a expressão.
Etapa 2
Etapa 2.1
Multiplique cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Etapa 2.2.1
Cancele o fator comum de .
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Reescreva a expressão.
Etapa 2.3
Simplifique o lado direito.
Etapa 2.3.1
Simplifique cada termo.
Etapa 2.3.1.1
Aplique a propriedade distributiva.
Etapa 2.3.1.2
Multiplique por .
Etapa 2.3.1.3
Multiplique por .
Etapa 2.3.1.4
Aplique a propriedade distributiva.
Etapa 2.3.1.5
Multiplique por .
Etapa 2.3.2
Combine os termos opostos em .
Etapa 2.3.2.1
Subtraia de .
Etapa 2.3.2.2
Some e .
Etapa 3
Etapa 3.1
Subtraia dos dois lados da equação.
Etapa 3.2
Some aos dois lados da equação.
Etapa 3.3
Combine os termos opostos em .
Etapa 3.3.1
Some e .
Etapa 3.3.2
Some e .
Etapa 3.4
Fatore de .
Etapa 3.4.1
Fatore de .
Etapa 3.4.2
Fatore de .
Etapa 3.4.3
Fatore de .
Etapa 3.5
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 3.6
Defina como igual a .
Etapa 3.7
Defina como igual a e resolva para .
Etapa 3.7.1
Defina como igual a .
Etapa 3.7.2
Resolva para .
Etapa 3.7.2.1
Subtraia dos dois lados da equação.
Etapa 3.7.2.2
Divida cada termo em por e simplifique.
Etapa 3.7.2.2.1
Divida cada termo em por .
Etapa 3.7.2.2.2
Simplifique o lado esquerdo.
Etapa 3.7.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.7.2.2.2.2
Divida por .
Etapa 3.7.2.2.3
Simplifique o lado direito.
Etapa 3.7.2.2.3.1
Divida por .
Etapa 3.8
A solução final são todos os valores que tornam verdadeiro.