Insira um problema...
Álgebra Exemplos
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
Como contém números e variáveis, há quatro etapas para encontrar o MMC. Encontre o MMC das partes numéricas, variáveis e variáveis compostas. Depois, multiplique tudo.
As etapas para encontrar o MMC de são:
1. Encontre o MMC da parte numérica .
2. Encontre o MMC da parte variável .
3. Encontre o MMC da parte variável composta .
4. Multiplique todos os MMCs juntos.
Etapa 2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.8
O fator de é o próprio .
ocorre vez.
Etapa 2.9
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.10
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Cancele o fator comum de .
Etapa 3.2.1.1.1
Cancele o fator comum.
Etapa 3.2.1.1.2
Reescreva a expressão.
Etapa 3.2.1.2
Aplique a propriedade distributiva.
Etapa 3.2.1.3
Multiplique por .
Etapa 3.2.1.4
Cancele o fator comum de .
Etapa 3.2.1.4.1
Fatore de .
Etapa 3.2.1.4.2
Cancele o fator comum.
Etapa 3.2.1.4.3
Reescreva a expressão.
Etapa 3.2.1.5
Aplique a propriedade distributiva.
Etapa 3.2.1.6
Multiplique por .
Etapa 3.2.1.7
Multiplique por .
Etapa 3.2.1.8
Aplique a propriedade distributiva.
Etapa 3.2.2
Simplifique somando os termos.
Etapa 3.2.2.1
Some e .
Etapa 3.2.2.2
Combine os termos opostos em .
Etapa 3.2.2.2.1
Subtraia de .
Etapa 3.2.2.2.2
Some e .
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Aplique a propriedade distributiva.
Etapa 3.3.2
Simplifique a expressão.
Etapa 3.3.2.1
Multiplique por .
Etapa 3.3.2.2
Multiplique por .
Etapa 3.3.2.3
Multiplique por .
Etapa 4
Etapa 4.1
Subtraia dos dois lados da equação.
Etapa 4.2
Divida cada termo em por e simplifique.
Etapa 4.2.1
Divida cada termo em por .
Etapa 4.2.2
Simplifique o lado esquerdo.
Etapa 4.2.2.1
Cancele o fator comum de .
Etapa 4.2.2.1.1
Cancele o fator comum.
Etapa 4.2.2.1.2
Divida por .
Etapa 4.2.3
Simplifique o lado direito.
Etapa 4.2.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 4.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 4.4
Simplifique .
Etapa 4.4.1
Reescreva como .
Etapa 4.4.2
Multiplique por .
Etapa 4.4.3
Combine e simplifique o denominador.
Etapa 4.4.3.1
Multiplique por .
Etapa 4.4.3.2
Eleve à potência de .
Etapa 4.4.3.3
Eleve à potência de .
Etapa 4.4.3.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.4.3.5
Some e .
Etapa 4.4.3.6
Reescreva como .
Etapa 4.4.3.6.1
Use para reescrever como .
Etapa 4.4.3.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.4.3.6.3
Combine e .
Etapa 4.4.3.6.4
Cancele o fator comum de .
Etapa 4.4.3.6.4.1
Cancele o fator comum.
Etapa 4.4.3.6.4.2
Reescreva a expressão.
Etapa 4.4.3.6.5
Avalie o expoente.
Etapa 4.4.4
Simplifique o numerador.
Etapa 4.4.4.1
Combine usando a regra do produto para radicais.
Etapa 4.4.4.2
Multiplique por .
Etapa 4.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: