Álgebra Exemplos

Resolva Usando a Fórmula Quadrática 2+3/((2x+1)(2x-1))=3
Etapa 1
Mova todos os termos para o lado esquerdo da equação e simplifique.
Toque para ver mais passagens...
Etapa 1.1
Subtraia dos dois lados da equação.
Etapa 1.2
Subtraia de .
Etapa 2
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
O MMC de um e qualquer expressão é a expressão.
Etapa 3
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.1.1
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 3.2.1.1.1
Aplique a propriedade distributiva.
Etapa 3.2.1.1.2
Aplique a propriedade distributiva.
Etapa 3.2.1.1.3
Aplique a propriedade distributiva.
Etapa 3.2.1.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 3.2.1.2.1
Reorganize os fatores nos termos e .
Etapa 3.2.1.2.2
Some e .
Etapa 3.2.1.2.3
Some e .
Etapa 3.2.1.3
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.1.3.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.3.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.2.1.3.2.1
Mova .
Etapa 3.2.1.3.2.2
Multiplique por .
Etapa 3.2.1.3.3
Multiplique por .
Etapa 3.2.1.3.4
Multiplique por .
Etapa 3.2.1.4
Aplique a propriedade distributiva.
Etapa 3.2.1.5
Multiplique por .
Etapa 3.2.1.6
Multiplique por .
Etapa 3.2.1.7
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.7.1
Cancele o fator comum.
Etapa 3.2.1.7.2
Reescreva a expressão.
Etapa 3.2.2
Some e .
Etapa 3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.3.1
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 3.3.1.1
Aplique a propriedade distributiva.
Etapa 3.3.1.2
Aplique a propriedade distributiva.
Etapa 3.3.1.3
Aplique a propriedade distributiva.
Etapa 3.3.2
Simplifique os termos.
Toque para ver mais passagens...
Etapa 3.3.2.1
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 3.3.2.1.1
Reorganize os fatores nos termos e .
Etapa 3.3.2.1.2
Some e .
Etapa 3.3.2.1.3
Some e .
Etapa 3.3.2.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.2.2.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3.2.2.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.3.2.2.2.1
Mova .
Etapa 3.3.2.2.2.2
Multiplique por .
Etapa 3.3.2.2.3
Multiplique por .
Etapa 3.3.2.2.4
Multiplique por .
Etapa 3.3.2.3
Multiplique por .
Etapa 4
Resolva a equação.
Toque para ver mais passagens...
Etapa 4.1
Subtraia dos dois lados da equação.
Etapa 4.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.2.1
Divida cada termo em por .
Etapa 4.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.1.1
Cancele o fator comum.
Etapa 4.2.2.1.2
Divida por .
Etapa 4.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.2.3.1
Divida por .
Etapa 4.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 4.4
Qualquer raiz de é .
Etapa 4.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 4.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.5.3
A solução completa é resultado das partes positiva e negativa da solução.