Enter a problem...
Trigonometry Examples
Step 1
Set the denominator in equal to to find where the expression is undefined.
Step 2
Step 2.1
Factor by grouping.
Step 2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.1.1.1
Factor out of .
Step 2.1.1.2
Rewrite as plus
Step 2.1.1.3
Apply the distributive property.
Step 2.1.2
Factor out the greatest common factor from each group.
Step 2.1.2.1
Group the first two terms and the last two terms.
Step 2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to and solve for .
Step 2.3.1
Set equal to .
Step 2.3.2
Solve for .
Step 2.3.2.1
Add to both sides of the equation.
Step 2.3.2.2
Divide each term in by and simplify.
Step 2.3.2.2.1
Divide each term in by .
Step 2.3.2.2.2
Simplify the left side.
Step 2.3.2.2.2.1
Cancel the common factor of .
Step 2.3.2.2.2.1.1
Cancel the common factor.
Step 2.3.2.2.2.1.2
Divide by .
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Subtract from both sides of the equation.
Step 2.5
The final solution is all the values that make true.
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Step 4.1
Factor by grouping.
Step 4.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.1.1.1
Factor out of .
Step 4.1.1.2
Rewrite as plus
Step 4.1.1.3
Apply the distributive property.
Step 4.1.2
Factor out the greatest common factor from each group.
Step 4.1.2.1
Group the first two terms and the last two terms.
Step 4.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.3
Set equal to and solve for .
Step 4.3.1
Set equal to .
Step 4.3.2
Solve for .
Step 4.3.2.1
Add to both sides of the equation.
Step 4.3.2.2
Divide each term in by and simplify.
Step 4.3.2.2.1
Divide each term in by .
Step 4.3.2.2.2
Simplify the left side.
Step 4.3.2.2.2.1
Cancel the common factor of .
Step 4.3.2.2.2.1.1
Cancel the common factor.
Step 4.3.2.2.2.1.2
Divide by .
Step 4.4
Set equal to and solve for .
Step 4.4.1
Set equal to .
Step 4.4.2
Subtract from both sides of the equation.
Step 4.5
The final solution is all the values that make true.
Step 5
Set the denominator in equal to to find where the expression is undefined.
Step 6
Step 6.1
Set the numerator equal to zero.
Step 6.2
Solve the equation for .
Step 6.2.1
Use the quadratic formula to find the solutions.
Step 6.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 6.2.3
Simplify.
Step 6.2.3.1
Simplify the numerator.
Step 6.2.3.1.1
Raise to the power of .
Step 6.2.3.1.2
Multiply .
Step 6.2.3.1.2.1
Multiply by .
Step 6.2.3.1.2.2
Multiply by .
Step 6.2.3.1.3
Subtract from .
Step 6.2.3.1.4
Rewrite as .
Step 6.2.3.1.5
Rewrite as .
Step 6.2.3.1.6
Rewrite as .
Step 6.2.3.2
Multiply by .
Step 6.2.4
Simplify the expression to solve for the portion of the .
Step 6.2.4.1
Simplify the numerator.
Step 6.2.4.1.1
Raise to the power of .
Step 6.2.4.1.2
Multiply .
Step 6.2.4.1.2.1
Multiply by .
Step 6.2.4.1.2.2
Multiply by .
Step 6.2.4.1.3
Subtract from .
Step 6.2.4.1.4
Rewrite as .
Step 6.2.4.1.5
Rewrite as .
Step 6.2.4.1.6
Rewrite as .
Step 6.2.4.2
Multiply by .
Step 6.2.4.3
Change the to .
Step 6.2.5
Simplify the expression to solve for the portion of the .
Step 6.2.5.1
Simplify the numerator.
Step 6.2.5.1.1
Raise to the power of .
Step 6.2.5.1.2
Multiply .
Step 6.2.5.1.2.1
Multiply by .
Step 6.2.5.1.2.2
Multiply by .
Step 6.2.5.1.3
Subtract from .
Step 6.2.5.1.4
Rewrite as .
Step 6.2.5.1.5
Rewrite as .
Step 6.2.5.1.6
Rewrite as .
Step 6.2.5.2
Multiply by .
Step 6.2.5.3
Change the to .
Step 6.2.6
The final answer is the combination of both solutions.
Step 7
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 8