Trigonometry Examples

Find Where Undefined/Discontinuous (1-sin(x))/(1+sin(x))=(sec(x)-tan(x))^2
Step 1
Subtract from both sides of the equation.
Step 2
Simplify .
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Rewrite in terms of sines and cosines.
Step 2.1.1.2
Rewrite in terms of sines and cosines.
Step 2.1.2
Rewrite as .
Step 2.1.3
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.3.1
Apply the distributive property.
Step 2.1.3.2
Apply the distributive property.
Step 2.1.3.3
Apply the distributive property.
Step 2.1.4
Simplify and combine like terms.
Tap for more steps...
Step 2.1.4.1
Simplify each term.
Tap for more steps...
Step 2.1.4.1.1
Multiply .
Tap for more steps...
Step 2.1.4.1.1.1
Multiply by .
Step 2.1.4.1.1.2
Raise to the power of .
Step 2.1.4.1.1.3
Raise to the power of .
Step 2.1.4.1.1.4
Use the power rule to combine exponents.
Step 2.1.4.1.1.5
Add and .
Step 2.1.4.1.2
Rewrite using the commutative property of multiplication.
Step 2.1.4.1.3
Multiply .
Tap for more steps...
Step 2.1.4.1.3.1
Multiply by .
Step 2.1.4.1.3.2
Raise to the power of .
Step 2.1.4.1.3.3
Raise to the power of .
Step 2.1.4.1.3.4
Use the power rule to combine exponents.
Step 2.1.4.1.3.5
Add and .
Step 2.1.4.1.4
Multiply .
Tap for more steps...
Step 2.1.4.1.4.1
Multiply by .
Step 2.1.4.1.4.2
Raise to the power of .
Step 2.1.4.1.4.3
Raise to the power of .
Step 2.1.4.1.4.4
Use the power rule to combine exponents.
Step 2.1.4.1.4.5
Add and .
Step 2.1.4.1.5
Multiply .
Tap for more steps...
Step 2.1.4.1.5.1
Multiply by .
Step 2.1.4.1.5.2
Multiply by .
Step 2.1.4.1.5.3
Multiply by .
Step 2.1.4.1.5.4
Raise to the power of .
Step 2.1.4.1.5.5
Raise to the power of .
Step 2.1.4.1.5.6
Use the power rule to combine exponents.
Step 2.1.4.1.5.7
Add and .
Step 2.1.4.1.5.8
Raise to the power of .
Step 2.1.4.1.5.9
Raise to the power of .
Step 2.1.4.1.5.10
Use the power rule to combine exponents.
Step 2.1.4.1.5.11
Add and .
Step 2.1.4.2
Subtract from .
Step 2.1.5
Simplify each term.
Tap for more steps...
Step 2.1.5.1
Combine and .
Step 2.1.5.2
Move the negative in front of the fraction.
Step 2.1.6
Apply the distributive property.
Step 2.1.7
Multiply .
Tap for more steps...
Step 2.1.7.1
Multiply by .
Step 2.1.7.2
Multiply by .
Step 2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3
To write as a fraction with a common denominator, multiply by .
Step 2.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 2.4.1
Multiply by .
Step 2.4.2
Multiply by .
Step 2.4.3
Reorder the factors of .
Step 2.5
Combine the numerators over the common denominator.
Step 2.6
Simplify each term.
Tap for more steps...
Step 2.6.1
Simplify the numerator.
Tap for more steps...
Step 2.6.1.1
Apply the distributive property.
Step 2.6.1.2
Multiply by .
Step 2.6.1.3
Apply the distributive property.
Step 2.6.1.4
Multiply by .
Step 2.6.1.5
Rewrite in a factored form.
Tap for more steps...
Step 2.6.1.5.1
Regroup terms.
Step 2.6.1.5.2
Add parentheses.
Step 2.6.1.5.3
Let . Substitute for all occurrences of .
Step 2.6.1.5.4
Factor out of .
Tap for more steps...
Step 2.6.1.5.4.1
Reorder and .
Step 2.6.1.5.4.2
Factor out of .
Step 2.6.1.5.4.3
Factor out of .
Step 2.6.1.5.4.4
Factor out of .
Step 2.6.1.5.5
Replace all occurrences of with .
Step 2.6.1.5.6
Factor out of .
Tap for more steps...
Step 2.6.1.5.6.1
Factor out of .
Step 2.6.1.5.6.2
Factor out of .
Step 2.6.1.5.6.3
Factor out of .
Step 2.6.1.5.7
Factor out of .
Tap for more steps...
Step 2.6.1.5.7.1
Factor out of .
Step 2.6.1.5.7.2
Factor out of .
Step 2.6.2
Move the negative in front of the fraction.
Step 2.7
To write as a fraction with a common denominator, multiply by .
Step 2.8
Multiply by .
Step 2.9
Combine the numerators over the common denominator.
Step 2.10
Simplify each term.
Tap for more steps...
Step 2.10.1
Simplify the numerator.
Tap for more steps...
Step 2.10.1.1
Factor out of .
Tap for more steps...
Step 2.10.1.1.1
Factor out of .
Step 2.10.1.1.2
Factor out of .
Step 2.10.1.1.3
Factor out of .
Step 2.10.1.2
Apply the distributive property.
Step 2.10.1.3
Simplify.
Tap for more steps...
Step 2.10.1.3.1
Multiply by .
Step 2.10.1.3.2
Rewrite as .
Step 2.10.1.3.3
Rewrite as .
Step 2.10.1.4
Apply the distributive property.
Step 2.10.1.5
Multiply by .
Step 2.10.1.6
Add and .
Step 2.10.1.7
Add and .
Step 2.10.1.8
Apply pythagorean identity.
Step 2.10.1.9
Factor out of .
Tap for more steps...
Step 2.10.1.9.1
Factor out of .
Step 2.10.1.9.2
Multiply by .
Step 2.10.1.9.3
Factor out of .
Step 2.10.1.10
Combine exponents.
Tap for more steps...
Step 2.10.1.10.1
Raise to the power of .
Step 2.10.1.10.2
Raise to the power of .
Step 2.10.1.10.3
Use the power rule to combine exponents.
Step 2.10.1.10.4
Add and .
Step 2.10.2
Cancel the common factor of and .
Tap for more steps...
Step 2.10.2.1
Reorder terms.
Step 2.10.2.2
Cancel the common factor.
Step 2.10.2.3
Rewrite the expression.
Step 2.11
Subtract from .
Step 3
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.