Enter a problem...
Trigonometry Examples
Step 1
Use the double-angle identity to transform to .
Step 2
Add to both sides of the equation.
Step 3
Step 3.1
Simplify .
Step 3.1.1
Simplify each term.
Step 3.1.1.1
Apply the sine double-angle identity.
Step 3.1.1.2
Convert from to .
Step 3.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.1.3
Combine the numerators over the common denominator.
Step 3.1.4
Simplify the numerator.
Step 3.1.4.1
Apply the sine double-angle identity.
Step 3.1.4.2
Apply the cosine double-angle identity.
Step 3.1.4.3
Simplify each term.
Step 3.1.4.3.1
Apply the sine double-angle identity.
Step 3.1.4.3.2
Use the double-angle identity to transform to .
Step 3.1.4.3.3
Apply the distributive property.
Step 3.1.4.3.4
Multiply by .
Step 3.1.4.3.5
Rewrite using the commutative property of multiplication.
Step 3.1.4.4
Apply the sine double-angle identity.
Step 4
Step 4.1
Set the numerator equal to zero.
Step 4.2
Solve the equation for .
Step 4.2.1
Simplify the left side.
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Rewrite in terms of sines and cosines.
Step 4.2.1.1.2
Rewrite in terms of sines and cosines.
Step 4.2.1.1.3
Combine and .
Step 4.2.1.1.4
Move the negative in front of the fraction.
Step 4.2.1.1.5
Multiply .
Step 4.2.1.1.5.1
Combine and .
Step 4.2.1.1.5.2
Multiply by by adding the exponents.
Step 4.2.1.1.5.2.1
Move .
Step 4.2.1.1.5.2.2
Multiply by .
Step 4.2.1.1.5.2.2.1
Raise to the power of .
Step 4.2.1.1.5.2.2.2
Use the power rule to combine exponents.
Step 4.2.1.1.5.2.3
Add and .
Step 4.2.1.1.6
Move to the left of .
Step 4.2.2
Multiply both sides of the equation by .
Step 4.2.3
Apply the distributive property.
Step 4.2.4
Simplify.
Step 4.2.4.1
Cancel the common factor of .
Step 4.2.4.1.1
Cancel the common factor.
Step 4.2.4.1.2
Rewrite the expression.
Step 4.2.4.2
Rewrite using the commutative property of multiplication.
Step 4.2.5
Simplify each term.
Step 4.2.5.1
Cancel the common factor of .
Step 4.2.5.1.1
Factor out of .
Step 4.2.5.1.2
Cancel the common factor.
Step 4.2.5.1.3
Rewrite the expression.
Step 4.2.5.2
Multiply by .
Step 4.2.6
Multiply by .
Step 4.2.7
Simplify each term.
Step 4.2.7.1
Apply the sine double-angle identity.
Step 4.2.7.2
Rewrite using the commutative property of multiplication.
Step 4.2.7.3
Multiply .
Step 4.2.7.3.1
Raise to the power of .
Step 4.2.7.3.2
Raise to the power of .
Step 4.2.7.3.3
Use the power rule to combine exponents.
Step 4.2.7.3.4
Add and .
Step 4.2.8
Factor out of .
Step 4.2.8.1
Factor out of .
Step 4.2.8.2
Raise to the power of .
Step 4.2.8.3
Factor out of .
Step 4.2.8.4
Factor out of .
Step 4.2.8.5
Factor out of .
Step 4.2.8.6
Factor out of .
Step 4.2.9
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.2.10
Set equal to and solve for .
Step 4.2.10.1
Set equal to .
Step 4.2.10.2
Solve for .
Step 4.2.10.2.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 4.2.10.2.2
Simplify the right side.
Step 4.2.10.2.2.1
The exact value of is .
Step 4.2.10.2.3
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 4.2.10.2.4
Subtract from .
Step 4.2.10.2.5
Find the period of .
Step 4.2.10.2.5.1
The period of the function can be calculated using .
Step 4.2.10.2.5.2
Replace with in the formula for period.
Step 4.2.10.2.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 4.2.10.2.5.4
Divide by .
Step 4.2.10.2.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
, for any integer
Step 4.2.11
Set equal to and solve for .
Step 4.2.11.1
Set equal to .
Step 4.2.11.2
Solve for .
Step 4.2.11.2.1
Replace the with based on the identity.
Step 4.2.11.2.2
Simplify each term.
Step 4.2.11.2.2.1
Apply the distributive property.
Step 4.2.11.2.2.2
Multiply by .
Step 4.2.11.2.2.3
Multiply by .
Step 4.2.11.2.3
Simplify by adding terms.
Step 4.2.11.2.3.1
Add and .
Step 4.2.11.2.3.2
Subtract from .
Step 4.2.11.2.4
Subtract from both sides of the equation.
Step 4.2.11.2.5
Divide each term in by and simplify.
Step 4.2.11.2.5.1
Divide each term in by .
Step 4.2.11.2.5.2
Simplify the left side.
Step 4.2.11.2.5.2.1
Cancel the common factor of .
Step 4.2.11.2.5.2.1.1
Cancel the common factor.
Step 4.2.11.2.5.2.1.2
Divide by .
Step 4.2.11.2.5.3
Simplify the right side.
Step 4.2.11.2.5.3.1
Dividing two negative values results in a positive value.
Step 4.2.11.2.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.2.11.2.7
Simplify .
Step 4.2.11.2.7.1
Rewrite as .
Step 4.2.11.2.7.2
Simplify the denominator.
Step 4.2.11.2.7.2.1
Rewrite as .
Step 4.2.11.2.7.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.2.11.2.8
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.2.11.2.8.1
First, use the positive value of the to find the first solution.
Step 4.2.11.2.8.2
Next, use the negative value of the to find the second solution.
Step 4.2.11.2.8.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.2.11.2.9
Set up each of the solutions to solve for .
Step 4.2.11.2.10
Solve for in .
Step 4.2.11.2.10.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 4.2.11.2.10.2
Simplify the right side.
Step 4.2.11.2.10.2.1
The exact value of is .
Step 4.2.11.2.10.3
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 4.2.11.2.10.4
Simplify .
Step 4.2.11.2.10.4.1
To write as a fraction with a common denominator, multiply by .
Step 4.2.11.2.10.4.2
Combine fractions.
Step 4.2.11.2.10.4.2.1
Combine and .
Step 4.2.11.2.10.4.2.2
Combine the numerators over the common denominator.
Step 4.2.11.2.10.4.3
Simplify the numerator.
Step 4.2.11.2.10.4.3.1
Move to the left of .
Step 4.2.11.2.10.4.3.2
Subtract from .
Step 4.2.11.2.10.5
Find the period of .
Step 4.2.11.2.10.5.1
The period of the function can be calculated using .
Step 4.2.11.2.10.5.2
Replace with in the formula for period.
Step 4.2.11.2.10.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 4.2.11.2.10.5.4
Divide by .
Step 4.2.11.2.10.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 4.2.11.2.11
Solve for in .
Step 4.2.11.2.11.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 4.2.11.2.11.2
Simplify the right side.
Step 4.2.11.2.11.2.1
The exact value of is .
Step 4.2.11.2.11.3
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 4.2.11.2.11.4
Simplify the expression to find the second solution.
Step 4.2.11.2.11.4.1
Subtract from .
Step 4.2.11.2.11.4.2
The resulting angle of is positive, less than , and coterminal with .
Step 4.2.11.2.11.5
Find the period of .
Step 4.2.11.2.11.5.1
The period of the function can be calculated using .
Step 4.2.11.2.11.5.2
Replace with in the formula for period.
Step 4.2.11.2.11.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 4.2.11.2.11.5.4
Divide by .
Step 4.2.11.2.11.6
Add to every negative angle to get positive angles.
Step 4.2.11.2.11.6.1
Add to to find the positive angle.
Step 4.2.11.2.11.6.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.11.2.11.6.3
Combine fractions.
Step 4.2.11.2.11.6.3.1
Combine and .
Step 4.2.11.2.11.6.3.2
Combine the numerators over the common denominator.
Step 4.2.11.2.11.6.4
Simplify the numerator.
Step 4.2.11.2.11.6.4.1
Multiply by .
Step 4.2.11.2.11.6.4.2
Subtract from .
Step 4.2.11.2.11.6.5
List the new angles.
Step 4.2.11.2.11.7
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 4.2.11.2.12
List all of the solutions.
, for any integer
Step 4.2.11.2.13
Consolidate the solutions.
Step 4.2.11.2.13.1
Consolidate and to .
, for any integer
Step 4.2.11.2.13.2
Consolidate and to .
, for any integer
, for any integer
, for any integer
, for any integer
Step 4.2.12
The final solution is all the values that make true.
, for any integer
, for any integer
, for any integer
Step 5
Step 5.1
Consolidate and to .
, for any integer
Step 5.2
Consolidate the answers.
, for any integer
, for any integer