Trigonometry Examples

Solve for x y=(x+7)/(24- square root of x^2-49)
Step 1
Rewrite the equation as .
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the left side.
Tap for more steps...
Step 3.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.1.1
Cancel the common factor.
Step 3.1.1.2
Rewrite the expression.
Step 3.2
Simplify the right side.
Tap for more steps...
Step 3.2.1
Simplify .
Tap for more steps...
Step 3.2.1.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1.1
Rewrite as .
Step 3.2.1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.2.1.2
Simplify by multiplying through.
Tap for more steps...
Step 3.2.1.2.1
Apply the distributive property.
Step 3.2.1.2.2
Simplify the expression.
Tap for more steps...
Step 3.2.1.2.2.1
Move to the left of .
Step 3.2.1.2.2.2
Rewrite using the commutative property of multiplication.
Step 3.2.1.2.2.3
Reorder and .
Step 4
Solve for .
Tap for more steps...
Step 4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4.2
Subtract from both sides of the equation.
Step 4.3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4.4
Simplify each side of the equation.
Tap for more steps...
Step 4.4.1
Use to rewrite as .
Step 4.4.2
Simplify the left side.
Tap for more steps...
Step 4.4.2.1
Simplify .
Tap for more steps...
Step 4.4.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 4.4.2.1.1.1
Apply the distributive property.
Step 4.4.2.1.1.2
Apply the distributive property.
Step 4.4.2.1.1.3
Apply the distributive property.
Step 4.4.2.1.2
Simplify terms.
Tap for more steps...
Step 4.4.2.1.2.1
Combine the opposite terms in .
Tap for more steps...
Step 4.4.2.1.2.1.1
Reorder the factors in the terms and .
Step 4.4.2.1.2.1.2
Add and .
Step 4.4.2.1.2.1.3
Add and .
Step 4.4.2.1.2.2
Simplify each term.
Tap for more steps...
Step 4.4.2.1.2.2.1
Multiply by .
Step 4.4.2.1.2.2.2
Multiply by .
Step 4.4.2.1.3
Use the power rule to distribute the exponent.
Tap for more steps...
Step 4.4.2.1.3.1
Apply the product rule to .
Step 4.4.2.1.3.2
Apply the product rule to .
Step 4.4.2.1.4
Raise to the power of .
Step 4.4.2.1.5
Multiply by .
Step 4.4.2.1.6
Multiply the exponents in .
Tap for more steps...
Step 4.4.2.1.6.1
Apply the power rule and multiply exponents, .
Step 4.4.2.1.6.2
Cancel the common factor of .
Tap for more steps...
Step 4.4.2.1.6.2.1
Cancel the common factor.
Step 4.4.2.1.6.2.2
Rewrite the expression.
Step 4.4.2.1.7
Simplify.
Step 4.4.2.1.8
Apply the distributive property.
Step 4.4.2.1.9
Move to the left of .
Step 4.4.3
Simplify the right side.
Tap for more steps...
Step 4.4.3.1
Simplify .
Tap for more steps...
Step 4.4.3.1.1
Rewrite as .
Step 4.4.3.1.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.4.3.1.3
Simplify terms.
Tap for more steps...
Step 4.4.3.1.3.1
Simplify each term.
Tap for more steps...
Step 4.4.3.1.3.1.1
Multiply by .
Step 4.4.3.1.3.1.2
Move to the left of .
Step 4.4.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 4.4.3.1.3.1.4
Multiply by .
Step 4.4.3.1.3.1.5
Multiply by .
Step 4.4.3.1.3.1.6
Multiply by .
Step 4.4.3.1.3.1.7
Rewrite using the commutative property of multiplication.
Step 4.4.3.1.3.1.8
Multiply by by adding the exponents.
Tap for more steps...
Step 4.4.3.1.3.1.8.1
Move .
Step 4.4.3.1.3.1.8.2
Multiply by .
Step 4.4.3.1.3.1.9
Multiply by .
Step 4.4.3.1.3.2
Add and .
Step 4.4.3.1.4
Subtract from .
Tap for more steps...
Step 4.4.3.1.4.1
Move .
Step 4.4.3.1.4.2
Subtract from .
Step 4.4.3.1.5
Subtract from .
Step 4.5
Solve for .
Tap for more steps...
Step 4.5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4.5.2
Subtract from both sides of the equation.
Step 4.5.3
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 4.5.3.1
Add to both sides of the equation.
Step 4.5.3.2
Add and .
Step 4.5.4
Use the quadratic formula to find the solutions.
Step 4.5.5
Substitute the values , , and into the quadratic formula and solve for .
Step 4.5.6
Simplify.
Tap for more steps...
Step 4.5.6.1
Simplify the numerator.
Tap for more steps...
Step 4.5.6.1.1
Apply the distributive property.
Step 4.5.6.1.2
Multiply by .
Step 4.5.6.1.3
Multiply by .
Step 4.5.6.1.4
Add parentheses.
Step 4.5.6.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 4.5.6.1.5.1
Rewrite as .
Step 4.5.6.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.5.6.1.5.2.1
Apply the distributive property.
Step 4.5.6.1.5.2.2
Apply the distributive property.
Step 4.5.6.1.5.2.3
Apply the distributive property.
Step 4.5.6.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 4.5.6.1.5.3.1
Simplify each term.
Tap for more steps...
Step 4.5.6.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 4.5.6.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 4.5.6.1.5.3.1.2.1
Move .
Step 4.5.6.1.5.3.1.2.2
Multiply by .
Step 4.5.6.1.5.3.1.3
Multiply by .
Step 4.5.6.1.5.3.1.4
Multiply by .
Step 4.5.6.1.5.3.1.5
Multiply by .
Step 4.5.6.1.5.3.1.6
Multiply by .
Step 4.5.6.1.5.3.2
Subtract from .
Step 4.5.6.1.6
Factor out of .
Tap for more steps...
Step 4.5.6.1.6.1
Factor out of .
Step 4.5.6.1.6.2
Factor out of .
Step 4.5.6.1.6.3
Factor out of .
Step 4.5.6.1.6.4
Factor out of .
Step 4.5.6.1.6.5
Factor out of .
Step 4.5.6.1.6.6
Factor out of .
Step 4.5.6.1.6.7
Factor out of .
Step 4.5.6.1.7
Replace all occurrences of with .
Step 4.5.6.1.8
Simplify.
Tap for more steps...
Step 4.5.6.1.8.1
Simplify each term.
Tap for more steps...
Step 4.5.6.1.8.1.1
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.5.6.1.8.1.2
Simplify each term.
Tap for more steps...
Step 4.5.6.1.8.1.2.1
Multiply by .
Step 4.5.6.1.8.1.2.2
Multiply by .
Step 4.5.6.1.8.1.2.3
Multiply by .
Step 4.5.6.1.8.1.2.4
Multiply by .
Step 4.5.6.1.8.1.2.5
Rewrite using the commutative property of multiplication.
Step 4.5.6.1.8.1.2.6
Multiply by by adding the exponents.
Tap for more steps...
Step 4.5.6.1.8.1.2.6.1
Move .
Step 4.5.6.1.8.1.2.6.2
Multiply by .
Tap for more steps...
Step 4.5.6.1.8.1.2.6.2.1
Raise to the power of .
Step 4.5.6.1.8.1.2.6.2.2
Use the power rule to combine exponents.
Step 4.5.6.1.8.1.2.6.3
Add and .
Step 4.5.6.1.8.1.2.7
Multiply by .
Step 4.5.6.1.8.1.2.8
Rewrite using the commutative property of multiplication.
Step 4.5.6.1.8.1.2.9
Multiply by by adding the exponents.
Tap for more steps...
Step 4.5.6.1.8.1.2.9.1
Move .
Step 4.5.6.1.8.1.2.9.2
Use the power rule to combine exponents.
Step 4.5.6.1.8.1.2.9.3
Add and .
Step 4.5.6.1.8.1.2.10
Multiply by .
Step 4.5.6.1.8.1.3
Subtract from .
Step 4.5.6.1.8.1.4
Apply the distributive property.
Step 4.5.6.1.8.1.5
Simplify.
Tap for more steps...
Step 4.5.6.1.8.1.5.1
Multiply by .
Step 4.5.6.1.8.1.5.2
Multiply by .
Step 4.5.6.1.8.1.5.3
Multiply by .
Step 4.5.6.1.8.1.5.4
Multiply by .
Step 4.5.6.1.8.1.5.5
Multiply by .
Step 4.5.6.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 4.5.6.1.8.2.1
Subtract from .
Step 4.5.6.1.8.2.2
Add and .
Step 4.5.6.1.8.2.3
Add and .
Step 4.5.6.1.8.2.4
Add and .
Step 4.5.6.1.8.2.5
Subtract from .
Step 4.5.6.1.8.3
Subtract from .
Step 4.5.6.1.9
Factor out of .
Tap for more steps...
Step 4.5.6.1.9.1
Factor out of .
Step 4.5.6.1.9.2
Factor out of .
Step 4.5.6.1.9.3
Factor out of .
Step 4.5.6.1.10
Rewrite as .
Tap for more steps...
Step 4.5.6.1.10.1
Rewrite as .
Step 4.5.6.1.10.2
Factor out .
Step 4.5.6.1.10.3
Rewrite as .
Step 4.5.6.1.10.4
Add parentheses.
Step 4.5.6.1.11
Pull terms out from under the radical.
Step 4.5.6.2
Simplify the denominator.
Tap for more steps...
Step 4.5.6.2.1
Rewrite as .
Step 4.5.6.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.5.7
The final answer is the combination of both solutions.