Enter a problem...
Trigonometry Examples
Step 1
Rewrite the equation as .
Step 2
Multiply both sides by .
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Cancel the common factor of .
Step 3.1.1.1
Cancel the common factor.
Step 3.1.1.2
Rewrite the expression.
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Simplify each term.
Step 3.2.1.1.1
Rewrite as .
Step 3.2.1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.2.1.2
Simplify by multiplying through.
Step 3.2.1.2.1
Apply the distributive property.
Step 3.2.1.2.2
Simplify the expression.
Step 3.2.1.2.2.1
Move to the left of .
Step 3.2.1.2.2.2
Rewrite using the commutative property of multiplication.
Step 3.2.1.2.2.3
Reorder and .
Step 4
Step 4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4.2
Subtract from both sides of the equation.
Step 4.3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4.4
Simplify each side of the equation.
Step 4.4.1
Use to rewrite as .
Step 4.4.2
Simplify the left side.
Step 4.4.2.1
Simplify .
Step 4.4.2.1.1
Expand using the FOIL Method.
Step 4.4.2.1.1.1
Apply the distributive property.
Step 4.4.2.1.1.2
Apply the distributive property.
Step 4.4.2.1.1.3
Apply the distributive property.
Step 4.4.2.1.2
Simplify terms.
Step 4.4.2.1.2.1
Combine the opposite terms in .
Step 4.4.2.1.2.1.1
Reorder the factors in the terms and .
Step 4.4.2.1.2.1.2
Add and .
Step 4.4.2.1.2.1.3
Add and .
Step 4.4.2.1.2.2
Simplify each term.
Step 4.4.2.1.2.2.1
Multiply by .
Step 4.4.2.1.2.2.2
Multiply by .
Step 4.4.2.1.3
Use the power rule to distribute the exponent.
Step 4.4.2.1.3.1
Apply the product rule to .
Step 4.4.2.1.3.2
Apply the product rule to .
Step 4.4.2.1.4
Raise to the power of .
Step 4.4.2.1.5
Multiply by .
Step 4.4.2.1.6
Multiply the exponents in .
Step 4.4.2.1.6.1
Apply the power rule and multiply exponents, .
Step 4.4.2.1.6.2
Cancel the common factor of .
Step 4.4.2.1.6.2.1
Cancel the common factor.
Step 4.4.2.1.6.2.2
Rewrite the expression.
Step 4.4.2.1.7
Simplify.
Step 4.4.2.1.8
Apply the distributive property.
Step 4.4.2.1.9
Move to the left of .
Step 4.4.3
Simplify the right side.
Step 4.4.3.1
Simplify .
Step 4.4.3.1.1
Rewrite as .
Step 4.4.3.1.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.4.3.1.3
Simplify terms.
Step 4.4.3.1.3.1
Simplify each term.
Step 4.4.3.1.3.1.1
Multiply by .
Step 4.4.3.1.3.1.2
Move to the left of .
Step 4.4.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 4.4.3.1.3.1.4
Multiply by .
Step 4.4.3.1.3.1.5
Multiply by .
Step 4.4.3.1.3.1.6
Multiply by .
Step 4.4.3.1.3.1.7
Rewrite using the commutative property of multiplication.
Step 4.4.3.1.3.1.8
Multiply by by adding the exponents.
Step 4.4.3.1.3.1.8.1
Move .
Step 4.4.3.1.3.1.8.2
Multiply by .
Step 4.4.3.1.3.1.9
Multiply by .
Step 4.4.3.1.3.2
Add and .
Step 4.4.3.1.4
Subtract from .
Step 4.4.3.1.4.1
Move .
Step 4.4.3.1.4.2
Subtract from .
Step 4.4.3.1.5
Subtract from .
Step 4.5
Solve for .
Step 4.5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 4.5.2
Subtract from both sides of the equation.
Step 4.5.3
Move all terms to the left side of the equation and simplify.
Step 4.5.3.1
Add to both sides of the equation.
Step 4.5.3.2
Add and .
Step 4.5.4
Use the quadratic formula to find the solutions.
Step 4.5.5
Substitute the values , , and into the quadratic formula and solve for .
Step 4.5.6
Simplify.
Step 4.5.6.1
Simplify the numerator.
Step 4.5.6.1.1
Apply the distributive property.
Step 4.5.6.1.2
Multiply by .
Step 4.5.6.1.3
Multiply by .
Step 4.5.6.1.4
Add parentheses.
Step 4.5.6.1.5
Let . Substitute for all occurrences of .
Step 4.5.6.1.5.1
Rewrite as .
Step 4.5.6.1.5.2
Expand using the FOIL Method.
Step 4.5.6.1.5.2.1
Apply the distributive property.
Step 4.5.6.1.5.2.2
Apply the distributive property.
Step 4.5.6.1.5.2.3
Apply the distributive property.
Step 4.5.6.1.5.3
Simplify and combine like terms.
Step 4.5.6.1.5.3.1
Simplify each term.
Step 4.5.6.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 4.5.6.1.5.3.1.2
Multiply by by adding the exponents.
Step 4.5.6.1.5.3.1.2.1
Move .
Step 4.5.6.1.5.3.1.2.2
Multiply by .
Step 4.5.6.1.5.3.1.3
Multiply by .
Step 4.5.6.1.5.3.1.4
Multiply by .
Step 4.5.6.1.5.3.1.5
Multiply by .
Step 4.5.6.1.5.3.1.6
Multiply by .
Step 4.5.6.1.5.3.2
Subtract from .
Step 4.5.6.1.6
Factor out of .
Step 4.5.6.1.6.1
Factor out of .
Step 4.5.6.1.6.2
Factor out of .
Step 4.5.6.1.6.3
Factor out of .
Step 4.5.6.1.6.4
Factor out of .
Step 4.5.6.1.6.5
Factor out of .
Step 4.5.6.1.6.6
Factor out of .
Step 4.5.6.1.6.7
Factor out of .
Step 4.5.6.1.7
Replace all occurrences of with .
Step 4.5.6.1.8
Simplify.
Step 4.5.6.1.8.1
Simplify each term.
Step 4.5.6.1.8.1.1
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.5.6.1.8.1.2
Simplify each term.
Step 4.5.6.1.8.1.2.1
Multiply by .
Step 4.5.6.1.8.1.2.2
Multiply by .
Step 4.5.6.1.8.1.2.3
Multiply by .
Step 4.5.6.1.8.1.2.4
Multiply by .
Step 4.5.6.1.8.1.2.5
Rewrite using the commutative property of multiplication.
Step 4.5.6.1.8.1.2.6
Multiply by by adding the exponents.
Step 4.5.6.1.8.1.2.6.1
Move .
Step 4.5.6.1.8.1.2.6.2
Multiply by .
Step 4.5.6.1.8.1.2.6.2.1
Raise to the power of .
Step 4.5.6.1.8.1.2.6.2.2
Use the power rule to combine exponents.
Step 4.5.6.1.8.1.2.6.3
Add and .
Step 4.5.6.1.8.1.2.7
Multiply by .
Step 4.5.6.1.8.1.2.8
Rewrite using the commutative property of multiplication.
Step 4.5.6.1.8.1.2.9
Multiply by by adding the exponents.
Step 4.5.6.1.8.1.2.9.1
Move .
Step 4.5.6.1.8.1.2.9.2
Use the power rule to combine exponents.
Step 4.5.6.1.8.1.2.9.3
Add and .
Step 4.5.6.1.8.1.2.10
Multiply by .
Step 4.5.6.1.8.1.3
Subtract from .
Step 4.5.6.1.8.1.4
Apply the distributive property.
Step 4.5.6.1.8.1.5
Simplify.
Step 4.5.6.1.8.1.5.1
Multiply by .
Step 4.5.6.1.8.1.5.2
Multiply by .
Step 4.5.6.1.8.1.5.3
Multiply by .
Step 4.5.6.1.8.1.5.4
Multiply by .
Step 4.5.6.1.8.1.5.5
Multiply by .
Step 4.5.6.1.8.2
Combine the opposite terms in .
Step 4.5.6.1.8.2.1
Subtract from .
Step 4.5.6.1.8.2.2
Add and .
Step 4.5.6.1.8.2.3
Add and .
Step 4.5.6.1.8.2.4
Add and .
Step 4.5.6.1.8.2.5
Subtract from .
Step 4.5.6.1.8.3
Subtract from .
Step 4.5.6.1.9
Factor out of .
Step 4.5.6.1.9.1
Factor out of .
Step 4.5.6.1.9.2
Factor out of .
Step 4.5.6.1.9.3
Factor out of .
Step 4.5.6.1.10
Rewrite as .
Step 4.5.6.1.10.1
Rewrite as .
Step 4.5.6.1.10.2
Factor out .
Step 4.5.6.1.10.3
Rewrite as .
Step 4.5.6.1.10.4
Add parentheses.
Step 4.5.6.1.11
Pull terms out from under the radical.
Step 4.5.6.2
Simplify the denominator.
Step 4.5.6.2.1
Rewrite as .
Step 4.5.6.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.5.7
The final answer is the combination of both solutions.