Trigonometry Examples

Find the asymptotes.
Tap for more steps...
For any , vertical asymptotes occur at , where is an integer. Use the basic period for , , to find the vertical asymptotes for . Set the inside of the secant function, , for equal to to find where the vertical asymptote occurs for .
Set the inside of the secant function equal to .
The basic period for will occur at , where and are vertical asymptotes.
Find the period to find where the vertical asymptotes exist. Vertical asymptotes occur every half period.
Tap for more steps...
The absolute value is the distance between a number and zero. The distance between and is .
Divide by .
The vertical asymptotes for occur at , , and every , where is an integer. This is half of the period.
There are only vertical asymptotes for secant and cosecant functions.
Vertical Asymptotes: for any integer
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: for any integer
No Horizontal Asymptotes
No Oblique Asymptotes
Use the form to find the variables used to find the amplitude, period, phase shift, and vertical shift.
Since the graph of the function does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Find the period using the formula .
Tap for more steps...
The period of the function can be calculated using .
Period:
Replace with in the formula for period.
Period:
Solve the equation.
Tap for more steps...
The absolute value is the distance between a number and zero. The distance between and is .
Period:
Divide by .
Period:
Period:
Period:
Find the phase shift using the formula .
Tap for more steps...
The phase shift of the function can be calculated from .
Phase Shift:
Replace the values of and in the equation for phase shift.
Phase Shift:
Divide by .
Phase Shift:
Phase Shift:
Find the vertical shift .
Vertical Shift:
List the properties of the trigonometric function.
Amplitude: None
Period:
Phase Shift: ( to the right)
Vertical Shift:
Select a few points to graph.
Tap for more steps...
Find the point at .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
The exact value of is .
The final answer is .
Find the point at .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the second quadrant.
The exact value of is .
Multiply by .
The final answer is .
Find the point at .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
is a full rotation so replace with .
The exact value of is .
The final answer is .
Find the point at .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
Remove full rotations of until the angle is between and .
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the second quadrant.
The exact value of is .
Multiply by .
The final answer is .
Find the point at .
Tap for more steps...
Replace the variable with in the expression.
Simplify the result.
Tap for more steps...
is a full rotation so replace with .
The exact value of is .
The final answer is .
List the points in a table.
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Vertical Asymptotes: for any integer
Amplitude: None
Period:
Phase Shift: ( to the right)
Vertical Shift:
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information