Enter a problem...
Precalculus Examples
Step 1
Convert from rectangular coordinates to polar coordinates using the conversion formulas.
Step 2
Replace and with the actual values.
Step 3
Step 3.1
Use the power rule to distribute the exponent.
Step 3.1.1
Apply the product rule to .
Step 3.1.2
Apply the product rule to .
Step 3.1.3
Apply the product rule to .
Step 3.2
Simplify the expression.
Step 3.2.1
Raise to the power of .
Step 3.2.2
Multiply by .
Step 3.3
Simplify the numerator.
Step 3.3.1
Raise to the power of .
Step 3.3.2
Rewrite as .
Step 3.3.2.1
Use to rewrite as .
Step 3.3.2.2
Apply the power rule and multiply exponents, .
Step 3.3.2.3
Combine and .
Step 3.3.2.4
Cancel the common factor of .
Step 3.3.2.4.1
Cancel the common factor.
Step 3.3.2.4.2
Rewrite the expression.
Step 3.3.2.5
Evaluate the exponent.
Step 3.4
Simplify terms.
Step 3.4.1
Raise to the power of .
Step 3.4.2
Multiply by .
Step 3.4.3
Cancel the common factor of and .
Step 3.4.3.1
Factor out of .
Step 3.4.3.2
Cancel the common factors.
Step 3.4.3.2.1
Factor out of .
Step 3.4.3.2.2
Cancel the common factor.
Step 3.4.3.2.3
Rewrite the expression.
Step 3.4.4
Cancel the common factor of .
Step 3.4.4.1
Cancel the common factor.
Step 3.4.4.2
Divide by .
Step 3.4.5
Simplify the expression.
Step 3.4.5.1
Apply the product rule to .
Step 3.4.5.2
Raise to the power of .
Step 3.4.5.3
Multiply by .
Step 3.4.6
Rewrite as .
Step 3.4.6.1
Use to rewrite as .
Step 3.4.6.2
Apply the power rule and multiply exponents, .
Step 3.4.6.3
Combine and .
Step 3.4.6.4
Cancel the common factor of .
Step 3.4.6.4.1
Cancel the common factor.
Step 3.4.6.4.2
Rewrite the expression.
Step 3.4.6.5
Evaluate the exponent.
Step 3.5
To write as a fraction with a common denominator, multiply by .
Step 3.6
Combine and .
Step 3.7
Combine the numerators over the common denominator.
Step 3.8
Simplify the numerator.
Step 3.8.1
Multiply by .
Step 3.8.2
Add and .
Step 3.9
Rewrite as .
Step 3.10
Multiply by .
Step 3.11
Combine and simplify the denominator.
Step 3.11.1
Multiply by .
Step 3.11.2
Raise to the power of .
Step 3.11.3
Raise to the power of .
Step 3.11.4
Use the power rule to combine exponents.
Step 3.11.5
Add and .
Step 3.11.6
Rewrite as .
Step 3.11.6.1
Use to rewrite as .
Step 3.11.6.2
Apply the power rule and multiply exponents, .
Step 3.11.6.3
Combine and .
Step 3.11.6.4
Cancel the common factor of .
Step 3.11.6.4.1
Cancel the common factor.
Step 3.11.6.4.2
Rewrite the expression.
Step 3.11.6.5
Evaluate the exponent.
Step 3.12
Simplify the numerator.
Step 3.12.1
Combine using the product rule for radicals.
Step 3.12.2
Multiply by .
Step 4
Replace and with the actual values.
Step 5
The inverse tangent of is .
Step 6
This is the result of the conversion to polar coordinates in form.