Precalculus Examples

Find the Properties (y-2)^2=4(1.5)(x-4.5)
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Isolate to the left side of the equation.
Tap for more steps...
Step 1.1.1
Rewrite the equation as .
Step 1.1.2
Multiply by .
Step 1.1.3
Divide each term in by and simplify.
Tap for more steps...
Step 1.1.3.1
Divide each term in by .
Step 1.1.3.2
Simplify the left side.
Tap for more steps...
Step 1.1.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.1.3.2.1.1
Cancel the common factor.
Step 1.1.3.2.1.2
Divide by .
Step 1.1.3.3
Simplify the right side.
Tap for more steps...
Step 1.1.3.3.1
Multiply by .
Step 1.1.3.3.2
Factor out of .
Step 1.1.3.3.3
Separate fractions.
Step 1.1.3.3.4
Divide by .
Step 1.1.3.3.5
Divide by .
Step 1.1.4
Add to both sides of the equation.
Step 1.2
Complete the square for .
Tap for more steps...
Step 1.2.1
Simplify the expression.
Tap for more steps...
Step 1.2.1.1
Simplify each term.
Tap for more steps...
Step 1.2.1.1.1
Rewrite as .
Step 1.2.1.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.2.1.1.2.1
Apply the distributive property.
Step 1.2.1.1.2.2
Apply the distributive property.
Step 1.2.1.1.2.3
Apply the distributive property.
Step 1.2.1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.2.1.1.3.1
Simplify each term.
Tap for more steps...
Step 1.2.1.1.3.1.1
Multiply by .
Step 1.2.1.1.3.1.2
Move to the left of .
Step 1.2.1.1.3.1.3
Multiply by .
Step 1.2.1.1.3.2
Subtract from .
Step 1.2.1.1.4
Apply the distributive property.
Step 1.2.1.1.5
Simplify.
Tap for more steps...
Step 1.2.1.1.5.1
Multiply by .
Step 1.2.1.1.5.2
Multiply by .
Step 1.2.1.2
Add and .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Tap for more steps...
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.2.4.2.1
Multiply by .
Step 1.2.4.2.2
Divide by .
Step 1.2.5
Find the value of using the formula .
Tap for more steps...
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Tap for more steps...
Step 1.2.5.2.1
Simplify each term.
Tap for more steps...
Step 1.2.5.2.1.1
Raise to the power of .
Step 1.2.5.2.1.2
Multiply by .
Step 1.2.5.2.1.3
Divide by .
Step 1.2.5.2.1.4
Multiply by .
Step 1.2.5.2.2
Subtract from .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Since the value of is positive, the parabola opens right.
Opens Right
Step 4
Find the vertex .
Step 5
Find , the distance from the vertex to the focus.
Tap for more steps...
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 5.2
Substitute the value of into the formula.
Step 5.3
Simplify.
Tap for more steps...
Step 5.3.1
Multiply by .
Step 5.3.2
Divide by .
Step 6
Find the focus.
Tap for more steps...
Step 6.1
The focus of a parabola can be found by adding to the x-coordinate if the parabola opens left or right.
Step 6.2
Substitute the known values of , , and into the formula and simplify.
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
Step 8
Find the directrix.
Tap for more steps...
Step 8.1
The directrix of a parabola is the vertical line found by subtracting from the x-coordinate of the vertex if the parabola opens left or right.
Step 8.2
Substitute the known values of and into the formula and simplify.
Step 9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Right
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Step 10