Enter a problem...
Finite Math Examples
,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Cancel the common factor of and .
Step 1.2.3.1.1.1
Factor out of .
Step 1.2.3.1.1.2
Cancel the common factors.
Step 1.2.3.1.1.2.1
Factor out of .
Step 1.2.3.1.1.2.2
Cancel the common factor.
Step 1.2.3.1.1.2.3
Rewrite the expression.
Step 1.2.3.1.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Cancel the common factor of .
Step 2.2.1.1.2.1
Factor out of .
Step 2.2.1.1.2.2
Cancel the common factor.
Step 2.2.1.1.2.3
Rewrite the expression.
Step 2.2.1.1.3
Multiply by .
Step 2.2.1.1.4
Cancel the common factor of .
Step 2.2.1.1.4.1
Move the leading negative in into the numerator.
Step 2.2.1.1.4.2
Factor out of .
Step 2.2.1.1.4.3
Factor out of .
Step 2.2.1.1.4.4
Cancel the common factor.
Step 2.2.1.1.4.5
Rewrite the expression.
Step 2.2.1.1.5
Combine and .
Step 2.2.1.1.6
Multiply by .
Step 2.2.1.1.7
Move the negative in front of the fraction.
Step 2.2.1.2
Add and .
Step 2.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.4
Simplify terms.
Step 2.2.1.4.1
Combine and .
Step 2.2.1.4.2
Combine the numerators over the common denominator.
Step 2.2.1.5
Simplify each term.
Step 2.2.1.5.1
Simplify the numerator.
Step 2.2.1.5.1.1
Factor out of .
Step 2.2.1.5.1.1.1
Factor out of .
Step 2.2.1.5.1.1.2
Factor out of .
Step 2.2.1.5.1.1.3
Factor out of .
Step 2.2.1.5.1.2
Multiply by .
Step 2.2.1.5.1.3
Subtract from .
Step 2.2.1.5.2
Move to the left of .
Step 2.2.1.5.3
Move the negative in front of the fraction.
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Multiply both sides of the equation by .
Step 3.3
Simplify both sides of the equation.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Cancel the common factor of .
Step 3.3.1.1.1.1
Move the leading negative in into the numerator.
Step 3.3.1.1.1.2
Move the leading negative in into the numerator.
Step 3.3.1.1.1.3
Factor out of .
Step 3.3.1.1.1.4
Cancel the common factor.
Step 3.3.1.1.1.5
Rewrite the expression.
Step 3.3.1.1.2
Cancel the common factor of .
Step 3.3.1.1.2.1
Factor out of .
Step 3.3.1.1.2.2
Cancel the common factor.
Step 3.3.1.1.2.3
Rewrite the expression.
Step 3.3.1.1.3
Multiply.
Step 3.3.1.1.3.1
Multiply by .
Step 3.3.1.1.3.2
Multiply by .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Multiply .
Step 3.3.2.1.1
Multiply by .
Step 3.3.2.1.2
Combine and .
Step 3.3.2.1.3
Multiply by .
Step 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.5
Simplify .
Step 3.5.1
Rewrite as .
Step 3.5.2
Simplify the numerator.
Step 3.5.2.1
Rewrite as .
Step 3.5.2.1.1
Factor out of .
Step 3.5.2.1.2
Rewrite as .
Step 3.5.2.2
Pull terms out from under the radical.
Step 3.5.3
Multiply by .
Step 3.5.4
Combine and simplify the denominator.
Step 3.5.4.1
Multiply by .
Step 3.5.4.2
Raise to the power of .
Step 3.5.4.3
Raise to the power of .
Step 3.5.4.4
Use the power rule to combine exponents.
Step 3.5.4.5
Add and .
Step 3.5.4.6
Rewrite as .
Step 3.5.4.6.1
Use to rewrite as .
Step 3.5.4.6.2
Apply the power rule and multiply exponents, .
Step 3.5.4.6.3
Combine and .
Step 3.5.4.6.4
Cancel the common factor of .
Step 3.5.4.6.4.1
Cancel the common factor.
Step 3.5.4.6.4.2
Rewrite the expression.
Step 3.5.4.6.5
Evaluate the exponent.
Step 3.5.5
Simplify the numerator.
Step 3.5.5.1
Combine using the product rule for radicals.
Step 3.5.5.2
Multiply by .
Step 3.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.6.1
First, use the positive value of the to find the first solution.
Step 3.6.2
Next, use the negative value of the to find the second solution.
Step 3.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Simplify the numerator.
Step 4.2.1.1.1.1
Apply the product rule to .
Step 4.2.1.1.1.2
Simplify the numerator.
Step 4.2.1.1.1.2.1
Apply the product rule to .
Step 4.2.1.1.1.2.2
Raise to the power of .
Step 4.2.1.1.1.2.3
Rewrite as .
Step 4.2.1.1.1.2.3.1
Use to rewrite as .
Step 4.2.1.1.1.2.3.2
Apply the power rule and multiply exponents, .
Step 4.2.1.1.1.2.3.3
Combine and .
Step 4.2.1.1.1.2.3.4
Cancel the common factor of .
Step 4.2.1.1.1.2.3.4.1
Cancel the common factor.
Step 4.2.1.1.1.2.3.4.2
Rewrite the expression.
Step 4.2.1.1.1.2.3.5
Evaluate the exponent.
Step 4.2.1.1.1.3
Raise to the power of .
Step 4.2.1.1.1.4
Multiply by .
Step 4.2.1.1.1.5
Cancel the common factor of and .
Step 4.2.1.1.1.5.1
Factor out of .
Step 4.2.1.1.1.5.2
Cancel the common factors.
Step 4.2.1.1.1.5.2.1
Factor out of .
Step 4.2.1.1.1.5.2.2
Cancel the common factor.
Step 4.2.1.1.1.5.2.3
Rewrite the expression.
Step 4.2.1.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.1.3
Cancel the common factor of .
Step 4.2.1.1.3.1
Factor out of .
Step 4.2.1.1.3.2
Factor out of .
Step 4.2.1.1.3.3
Cancel the common factor.
Step 4.2.1.1.3.4
Rewrite the expression.
Step 4.2.1.1.4
Multiply by .
Step 4.2.1.1.5
Multiply by .
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.2.1.3.1
Multiply by .
Step 4.2.1.3.2
Multiply by .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify the numerator.
Step 4.2.1.5.1
Multiply by .
Step 4.2.1.5.2
Subtract from .
Step 4.2.1.6
Cancel the common factor of and .
Step 4.2.1.6.1
Factor out of .
Step 4.2.1.6.2
Cancel the common factors.
Step 4.2.1.6.2.1
Factor out of .
Step 4.2.1.6.2.2
Cancel the common factor.
Step 4.2.1.6.2.3
Rewrite the expression.
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Simplify the numerator.
Step 5.2.1.1.1.1
Apply the product rule to .
Step 5.2.1.1.1.2
Raise to the power of .
Step 5.2.1.1.1.3
Use the power rule to distribute the exponent.
Step 5.2.1.1.1.3.1
Apply the product rule to .
Step 5.2.1.1.1.3.2
Apply the product rule to .
Step 5.2.1.1.1.4
Simplify the numerator.
Step 5.2.1.1.1.4.1
Raise to the power of .
Step 5.2.1.1.1.4.2
Rewrite as .
Step 5.2.1.1.1.4.2.1
Use to rewrite as .
Step 5.2.1.1.1.4.2.2
Apply the power rule and multiply exponents, .
Step 5.2.1.1.1.4.2.3
Combine and .
Step 5.2.1.1.1.4.2.4
Cancel the common factor of .
Step 5.2.1.1.1.4.2.4.1
Cancel the common factor.
Step 5.2.1.1.1.4.2.4.2
Rewrite the expression.
Step 5.2.1.1.1.4.2.5
Evaluate the exponent.
Step 5.2.1.1.1.5
Raise to the power of .
Step 5.2.1.1.1.6
Multiply by .
Step 5.2.1.1.1.7
Cancel the common factor of and .
Step 5.2.1.1.1.7.1
Factor out of .
Step 5.2.1.1.1.7.2
Cancel the common factors.
Step 5.2.1.1.1.7.2.1
Factor out of .
Step 5.2.1.1.1.7.2.2
Cancel the common factor.
Step 5.2.1.1.1.7.2.3
Rewrite the expression.
Step 5.2.1.1.1.8
Multiply by .
Step 5.2.1.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.1.1.3
Cancel the common factor of .
Step 5.2.1.1.3.1
Factor out of .
Step 5.2.1.1.3.2
Factor out of .
Step 5.2.1.1.3.3
Cancel the common factor.
Step 5.2.1.1.3.4
Rewrite the expression.
Step 5.2.1.1.4
Multiply by .
Step 5.2.1.1.5
Multiply by .
Step 5.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 5.2.1.3.1
Multiply by .
Step 5.2.1.3.2
Multiply by .
Step 5.2.1.4
Combine the numerators over the common denominator.
Step 5.2.1.5
Simplify the numerator.
Step 5.2.1.5.1
Multiply by .
Step 5.2.1.5.2
Subtract from .
Step 5.2.1.6
Cancel the common factor of and .
Step 5.2.1.6.1
Factor out of .
Step 5.2.1.6.2
Cancel the common factors.
Step 5.2.1.6.2.1
Factor out of .
Step 5.2.1.6.2.2
Cancel the common factor.
Step 5.2.1.6.2.3
Rewrite the expression.
Step 6
List all of the solutions.