Algebra Examples

Divide (3x^3-3-6x)÷(3+3x)
Step 1
Rewrite the division as a fraction.
Step 2
Cancel the common factor of and .
Tap for more steps...
Step 2.1
Factor out of .
Step 2.2
Factor out of .
Step 2.3
Factor out of .
Step 2.4
Factor out of .
Step 2.5
Factor out of .
Step 2.6
Cancel the common factors.
Tap for more steps...
Step 2.6.1
Factor out of .
Step 2.6.2
Factor out of .
Step 2.6.3
Factor out of .
Step 2.6.4
Cancel the common factor.
Step 2.6.5
Rewrite the expression.
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Reorder terms.
Step 3.2
Factor using the rational roots test.
Tap for more steps...
Step 3.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 3.2.2
Find every combination of . These are the possible roots of the polynomial function.
Step 3.2.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 3.2.3.1
Substitute into the polynomial.
Step 3.2.3.2
Raise to the power of .
Step 3.2.3.3
Multiply by .
Step 3.2.3.4
Add and .
Step 3.2.3.5
Subtract from .
Step 3.2.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 3.2.5
Divide by .
Tap for more steps...
Step 3.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++--
Step 3.2.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
++--
Step 3.2.5.3
Multiply the new quotient term by the divisor.
++--
++
Step 3.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
++--
--
Step 3.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++--
--
-
Step 3.2.5.6
Pull the next terms from the original dividend down into the current dividend.
++--
--
--
Step 3.2.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
++--
--
--
Step 3.2.5.8
Multiply the new quotient term by the divisor.
-
++--
--
--
--
Step 3.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
++--
--
--
++
Step 3.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
++--
--
--
++
-
Step 3.2.5.11
Pull the next terms from the original dividend down into the current dividend.
-
++--
--
--
++
--
Step 3.2.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
--
++--
--
--
++
--
Step 3.2.5.13
Multiply the new quotient term by the divisor.
--
++--
--
--
++
--
--
Step 3.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
--
++--
--
--
++
--
++
Step 3.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--
++--
--
--
++
--
++
Step 3.2.5.16
Since the remander is , the final answer is the quotient.
Step 3.2.6
Write as a set of factors.
Step 4
Cancel the common factor of and .
Tap for more steps...
Step 4.1
Reorder terms.
Step 4.2
Cancel the common factor.
Step 4.3
Divide by .