Enter a problem...
Algebra Examples
Step 1
Eliminate the equal sides of each equation and combine.
Step 2
Step 2.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 2.2
Move all terms containing to the left side of the equation.
Step 2.2.1
Subtract from both sides of the equation.
Step 2.2.2
Subtract from .
Step 2.3
Move all terms to the left side of the equation and simplify.
Step 2.3.1
Add to both sides of the equation.
Step 2.3.2
Add and .
Step 2.4
Use the quadratic formula to find the solutions.
Step 2.5
Substitute the values , , and into the quadratic formula and solve for .
Step 2.6
Simplify.
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
One to any power is one.
Step 2.6.1.2
Multiply .
Step 2.6.1.2.1
Multiply by .
Step 2.6.1.2.2
Multiply by .
Step 2.6.1.3
Subtract from .
Step 2.6.1.4
Rewrite as .
Step 2.6.1.5
Rewrite as .
Step 2.6.1.6
Rewrite as .
Step 2.6.2
Multiply by .
Step 2.7
Simplify the expression to solve for the portion of the .
Step 2.7.1
Simplify the numerator.
Step 2.7.1.1
One to any power is one.
Step 2.7.1.2
Multiply .
Step 2.7.1.2.1
Multiply by .
Step 2.7.1.2.2
Multiply by .
Step 2.7.1.3
Subtract from .
Step 2.7.1.4
Rewrite as .
Step 2.7.1.5
Rewrite as .
Step 2.7.1.6
Rewrite as .
Step 2.7.2
Multiply by .
Step 2.7.3
Change the to .
Step 2.7.4
Rewrite as .
Step 2.7.5
Factor out of .
Step 2.7.6
Factor out of .
Step 2.7.7
Move the negative in front of the fraction.
Step 2.8
Simplify the expression to solve for the portion of the .
Step 2.8.1
Simplify the numerator.
Step 2.8.1.1
One to any power is one.
Step 2.8.1.2
Multiply .
Step 2.8.1.2.1
Multiply by .
Step 2.8.1.2.2
Multiply by .
Step 2.8.1.3
Subtract from .
Step 2.8.1.4
Rewrite as .
Step 2.8.1.5
Rewrite as .
Step 2.8.1.6
Rewrite as .
Step 2.8.2
Multiply by .
Step 2.8.3
Change the to .
Step 2.8.4
Rewrite as .
Step 2.8.5
Factor out of .
Step 2.8.6
Factor out of .
Step 2.8.7
Move the negative in front of the fraction.
Step 2.9
The final answer is the combination of both solutions.
Step 3
Step 3.1
Substitute for .
Step 3.2
Simplify .
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Use the power rule to distribute the exponent.
Step 3.2.1.1.1
Apply the product rule to .
Step 3.2.1.1.2
Apply the product rule to .
Step 3.2.1.2
Raise to the power of .
Step 3.2.1.3
Multiply by .
Step 3.2.1.4
Raise to the power of .
Step 3.2.1.5
Rewrite as .
Step 3.2.1.6
Expand using the FOIL Method.
Step 3.2.1.6.1
Apply the distributive property.
Step 3.2.1.6.2
Apply the distributive property.
Step 3.2.1.6.3
Apply the distributive property.
Step 3.2.1.7
Simplify and combine like terms.
Step 3.2.1.7.1
Simplify each term.
Step 3.2.1.7.1.1
Multiply by .
Step 3.2.1.7.1.2
Multiply by .
Step 3.2.1.7.1.3
Multiply by .
Step 3.2.1.7.1.4
Multiply .
Step 3.2.1.7.1.4.1
Multiply by .
Step 3.2.1.7.1.4.2
Multiply by .
Step 3.2.1.7.1.4.3
Raise to the power of .
Step 3.2.1.7.1.4.4
Raise to the power of .
Step 3.2.1.7.1.4.5
Use the power rule to combine exponents.
Step 3.2.1.7.1.4.6
Add and .
Step 3.2.1.7.1.4.7
Raise to the power of .
Step 3.2.1.7.1.4.8
Raise to the power of .
Step 3.2.1.7.1.4.9
Use the power rule to combine exponents.
Step 3.2.1.7.1.4.10
Add and .
Step 3.2.1.7.1.5
Rewrite as .
Step 3.2.1.7.1.5.1
Use to rewrite as .
Step 3.2.1.7.1.5.2
Apply the power rule and multiply exponents, .
Step 3.2.1.7.1.5.3
Combine and .
Step 3.2.1.7.1.5.4
Cancel the common factor of .
Step 3.2.1.7.1.5.4.1
Cancel the common factor.
Step 3.2.1.7.1.5.4.2
Rewrite the expression.
Step 3.2.1.7.1.5.5
Evaluate the exponent.
Step 3.2.1.7.1.6
Rewrite as .
Step 3.2.1.7.1.7
Multiply by .
Step 3.2.1.7.2
Subtract from .
Step 3.2.1.7.3
Subtract from .
Step 3.2.1.8
Reorder and .
Step 3.2.1.9
Cancel the common factor of and .
Step 3.2.1.9.1
Factor out of .
Step 3.2.1.9.2
Factor out of .
Step 3.2.1.9.3
Factor out of .
Step 3.2.1.9.4
Cancel the common factors.
Step 3.2.1.9.4.1
Factor out of .
Step 3.2.1.9.4.2
Cancel the common factor.
Step 3.2.1.9.4.3
Rewrite the expression.
Step 3.2.1.10
Cancel the common factor of .
Step 3.2.1.10.1
Move the leading negative in into the numerator.
Step 3.2.1.10.2
Cancel the common factor.
Step 3.2.1.10.3
Rewrite the expression.
Step 3.2.1.11
Apply the distributive property.
Step 3.2.1.12
Multiply by .
Step 3.2.1.13
Multiply .
Step 3.2.1.13.1
Multiply by .
Step 3.2.1.13.2
Multiply by .
Step 3.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.3
Combine and .
Step 3.2.4
Combine the numerators over the common denominator.
Step 3.2.5
To write as a fraction with a common denominator, multiply by .
Step 3.2.6
Combine and .
Step 3.2.7
Combine the numerators over the common denominator.
Step 3.2.8
To write as a fraction with a common denominator, multiply by .
Step 3.2.9
Combine and .
Step 3.2.10
Combine the numerators over the common denominator.
Step 3.2.11
Rewrite as .
Step 3.2.12
Factor out of .
Step 3.2.13
Factor out of .
Step 3.2.14
Move the negative in front of the fraction.
Step 4
Step 4.1
Substitute for .
Step 4.2
Simplify .
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Use the power rule to distribute the exponent.
Step 4.2.1.1.1
Apply the product rule to .
Step 4.2.1.1.2
Apply the product rule to .
Step 4.2.1.2
Raise to the power of .
Step 4.2.1.3
Multiply by .
Step 4.2.1.4
Raise to the power of .
Step 4.2.1.5
Rewrite as .
Step 4.2.1.6
Expand using the FOIL Method.
Step 4.2.1.6.1
Apply the distributive property.
Step 4.2.1.6.2
Apply the distributive property.
Step 4.2.1.6.3
Apply the distributive property.
Step 4.2.1.7
Simplify and combine like terms.
Step 4.2.1.7.1
Simplify each term.
Step 4.2.1.7.1.1
Multiply by .
Step 4.2.1.7.1.2
Multiply by .
Step 4.2.1.7.1.3
Multiply by .
Step 4.2.1.7.1.4
Multiply .
Step 4.2.1.7.1.4.1
Raise to the power of .
Step 4.2.1.7.1.4.2
Raise to the power of .
Step 4.2.1.7.1.4.3
Use the power rule to combine exponents.
Step 4.2.1.7.1.4.4
Add and .
Step 4.2.1.7.1.4.5
Raise to the power of .
Step 4.2.1.7.1.4.6
Raise to the power of .
Step 4.2.1.7.1.4.7
Use the power rule to combine exponents.
Step 4.2.1.7.1.4.8
Add and .
Step 4.2.1.7.1.5
Rewrite as .
Step 4.2.1.7.1.6
Rewrite as .
Step 4.2.1.7.1.6.1
Use to rewrite as .
Step 4.2.1.7.1.6.2
Apply the power rule and multiply exponents, .
Step 4.2.1.7.1.6.3
Combine and .
Step 4.2.1.7.1.6.4
Cancel the common factor of .
Step 4.2.1.7.1.6.4.1
Cancel the common factor.
Step 4.2.1.7.1.6.4.2
Rewrite the expression.
Step 4.2.1.7.1.6.5
Evaluate the exponent.
Step 4.2.1.7.1.7
Multiply by .
Step 4.2.1.7.2
Subtract from .
Step 4.2.1.7.3
Add and .
Step 4.2.1.8
Reorder and .
Step 4.2.1.9
Cancel the common factor of and .
Step 4.2.1.9.1
Factor out of .
Step 4.2.1.9.2
Factor out of .
Step 4.2.1.9.3
Factor out of .
Step 4.2.1.9.4
Cancel the common factors.
Step 4.2.1.9.4.1
Factor out of .
Step 4.2.1.9.4.2
Cancel the common factor.
Step 4.2.1.9.4.3
Rewrite the expression.
Step 4.2.1.10
Cancel the common factor of .
Step 4.2.1.10.1
Move the leading negative in into the numerator.
Step 4.2.1.10.2
Cancel the common factor.
Step 4.2.1.10.3
Rewrite the expression.
Step 4.2.1.11
Apply the distributive property.
Step 4.2.1.12
Multiply by .
Step 4.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.3
Combine and .
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.2.6
Combine and .
Step 4.2.7
Combine the numerators over the common denominator.
Step 4.2.8
To write as a fraction with a common denominator, multiply by .
Step 4.2.9
Combine and .
Step 4.2.10
Combine the numerators over the common denominator.
Step 4.2.11
Rewrite as .
Step 4.2.12
Factor out of .
Step 4.2.13
Factor out of .
Step 4.2.14
Move the negative in front of the fraction.
Step 5
List all of the solutions.
Step 6