Enter a problem...
Algebra Examples
Step 1
Step 1.1
Rewrite the equation as .
Step 1.2
Simplify .
Step 1.2.1
Rewrite the expression using the negative exponent rule .
Step 1.2.2
Combine and .
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Multiply the exponents in .
Step 3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.2
Simplify.
Step 3.3
Simplify the right side.
Step 3.3.1
Apply the product rule to .
Step 4
Step 4.1
Multiply both sides by .
Step 4.2
Simplify.
Step 4.2.1
Simplify the left side.
Step 4.2.1.1
Simplify .
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Reorder and .
Step 4.2.2
Simplify the right side.
Step 4.2.2.1
Cancel the common factor of .
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Rewrite the expression.
Step 4.3
Solve for .
Step 4.3.1
Subtract from both sides of the equation.
Step 4.3.2
Use the quadratic formula to find the solutions.
Step 4.3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 4.3.4
Simplify.
Step 4.3.4.1
Simplify the numerator.
Step 4.3.4.1.1
Multiply the exponents in .
Step 4.3.4.1.1.1
Apply the power rule and multiply exponents, .
Step 4.3.4.1.1.2
Multiply by .
Step 4.3.4.1.2
Multiply .
Step 4.3.4.1.2.1
Multiply by .
Step 4.3.4.1.2.2
Multiply by .
Step 4.3.4.1.3
Factor out of .
Step 4.3.4.1.3.1
Factor out of .
Step 4.3.4.1.3.2
Factor out of .
Step 4.3.4.1.3.3
Factor out of .
Step 4.3.4.1.4
Pull terms out from under the radical.
Step 4.3.4.2
Multiply by .
Step 4.3.4.3
Simplify .
Step 4.3.5
Simplify the expression to solve for the portion of the .
Step 4.3.5.1
Simplify the numerator.
Step 4.3.5.1.1
Multiply the exponents in .
Step 4.3.5.1.1.1
Apply the power rule and multiply exponents, .
Step 4.3.5.1.1.2
Multiply by .
Step 4.3.5.1.2
Multiply .
Step 4.3.5.1.2.1
Multiply by .
Step 4.3.5.1.2.2
Multiply by .
Step 4.3.5.1.3
Factor out of .
Step 4.3.5.1.3.1
Factor out of .
Step 4.3.5.1.3.2
Factor out of .
Step 4.3.5.1.3.3
Factor out of .
Step 4.3.5.1.4
Pull terms out from under the radical.
Step 4.3.5.2
Multiply by .
Step 4.3.5.3
Simplify .
Step 4.3.5.4
Change the to .
Step 4.3.5.5
Factor out of .
Step 4.3.5.5.1
Factor out of .
Step 4.3.5.5.2
Factor out of .
Step 4.3.5.5.3
Factor out of .
Step 4.3.6
Simplify the expression to solve for the portion of the .
Step 4.3.6.1
Simplify the numerator.
Step 4.3.6.1.1
Multiply the exponents in .
Step 4.3.6.1.1.1
Apply the power rule and multiply exponents, .
Step 4.3.6.1.1.2
Multiply by .
Step 4.3.6.1.2
Multiply .
Step 4.3.6.1.2.1
Multiply by .
Step 4.3.6.1.2.2
Multiply by .
Step 4.3.6.1.3
Factor out of .
Step 4.3.6.1.3.1
Factor out of .
Step 4.3.6.1.3.2
Factor out of .
Step 4.3.6.1.3.3
Factor out of .
Step 4.3.6.1.4
Pull terms out from under the radical.
Step 4.3.6.2
Multiply by .
Step 4.3.6.3
Simplify .
Step 4.3.6.4
Change the to .
Step 4.3.6.5
Factor out of .
Step 4.3.6.5.1
Factor out of .
Step 4.3.6.5.2
Factor out of .
Step 4.3.6.5.3
Factor out of .
Step 4.3.7
The final answer is the combination of both solutions.
Step 5
To rewrite as a function of , write the equation so that is by itself on one side of the equal sign and an expression involving only is on the other side.