Algebra Examples

Find the Vertex Form h(x)=-1/64x^2+13/32x+2
Step 1
Write as an equation.
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Combine and .
Step 2.2
Combine and .
Step 3
Complete the square for .
Tap for more steps...
Step 3.1
Use the form , to find the values of , , and .
Step 3.2
Consider the vertex form of a parabola.
Step 3.3
Find the value of using the formula .
Tap for more steps...
Step 3.3.1
Substitute the values of and into the formula .
Step 3.3.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 3.3.2.2
Cancel the common factor of and .
Tap for more steps...
Step 3.3.2.2.1
Rewrite as .
Step 3.3.2.2.2
Move the negative in front of the fraction.
Step 3.3.2.3
Combine and .
Step 3.3.2.4
Cancel the common factor of and .
Tap for more steps...
Step 3.3.2.4.1
Factor out of .
Step 3.3.2.4.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.4.2.1
Factor out of .
Step 3.3.2.4.2.2
Cancel the common factor.
Step 3.3.2.4.2.3
Rewrite the expression.
Step 3.3.2.5
Multiply the numerator by the reciprocal of the denominator.
Step 3.3.2.6
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.6.1
Factor out of .
Step 3.3.2.6.2
Cancel the common factor.
Step 3.3.2.6.3
Rewrite the expression.
Step 3.3.2.7
Multiply by .
Step 3.3.2.8
Multiply by .
Step 3.4
Find the value of using the formula .
Tap for more steps...
Step 3.4.1
Substitute the values of , and into the formula .
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.1.1
Simplify the numerator.
Tap for more steps...
Step 3.4.2.1.1.1
Apply the product rule to .
Step 3.4.2.1.1.2
Raise to the power of .
Step 3.4.2.1.1.3
Raise to the power of .
Step 3.4.2.1.2
Simplify the denominator.
Tap for more steps...
Step 3.4.2.1.2.1
Multiply by .
Step 3.4.2.1.2.2
Combine and .
Step 3.4.2.1.3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.4.2.1.3.1
Cancel the common factor of and .
Tap for more steps...
Step 3.4.2.1.3.1.1
Factor out of .
Step 3.4.2.1.3.1.2
Cancel the common factors.
Tap for more steps...
Step 3.4.2.1.3.1.2.1
Factor out of .
Step 3.4.2.1.3.1.2.2
Cancel the common factor.
Step 3.4.2.1.3.1.2.3
Rewrite the expression.
Step 3.4.2.1.3.2
Move the negative in front of the fraction.
Step 3.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 3.4.2.1.5
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.5.1
Factor out of .
Step 3.4.2.1.5.2
Factor out of .
Step 3.4.2.1.5.3
Cancel the common factor.
Step 3.4.2.1.5.4
Rewrite the expression.
Step 3.4.2.1.6
Combine and .
Step 3.4.2.1.7
Multiply by .
Step 3.4.2.1.8
Move the negative in front of the fraction.
Step 3.4.2.1.9
Multiply .
Tap for more steps...
Step 3.4.2.1.9.1
Multiply by .
Step 3.4.2.1.9.2
Multiply by .
Step 3.4.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.3
Combine and .
Step 3.4.2.4
Combine the numerators over the common denominator.
Step 3.4.2.5
Simplify the numerator.
Tap for more steps...
Step 3.4.2.5.1
Multiply by .
Step 3.4.2.5.2
Add and .
Step 3.5
Substitute the values of , , and into the vertex form .
Step 4
Set equal to the new right side.