Enter a problem...
Algebra Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.3.1.2
Multiply by by adding the exponents.
Step 1.3.1.2.1
Move .
Step 1.3.1.2.2
Multiply by .
Step 1.3.1.3
Multiply by .
Step 1.3.1.4
Multiply by .
Step 1.3.1.5
Multiply by .
Step 1.3.1.6
Multiply by .
Step 1.3.2
Add and .
Step 1.4
Apply the distributive property.
Step 1.5
Simplify.
Step 1.5.1
Rewrite using the commutative property of multiplication.
Step 1.5.2
Rewrite using the commutative property of multiplication.
Step 1.5.3
Multiply by .
Step 1.6
Simplify each term.
Step 1.6.1
Multiply by by adding the exponents.
Step 1.6.1.1
Move .
Step 1.6.1.2
Use the power rule to combine exponents.
Step 1.6.1.3
Add and .
Step 1.6.2
Multiply by .
Step 1.6.3
Multiply by by adding the exponents.
Step 1.6.3.1
Move .
Step 1.6.3.2
Multiply by .
Step 1.6.3.2.1
Raise to the power of .
Step 1.6.3.2.2
Use the power rule to combine exponents.
Step 1.6.3.3
Add and .
Step 1.6.4
Multiply by .
Step 1.7
Use the Binomial Theorem.
Step 1.8
Simplify each term.
Step 1.8.1
Raise to the power of .
Step 1.8.2
Raise to the power of .
Step 1.8.3
Multiply by .
Step 1.8.4
Multiply by .
Step 1.8.5
Raise to the power of .
Step 1.8.6
Multiply by .
Step 1.8.7
Apply the product rule to .
Step 1.8.8
Raise to the power of .
Step 1.8.9
Multiply by .
Step 1.8.10
Multiply by .
Step 1.8.11
Apply the product rule to .
Step 1.8.12
Raise to the power of .
Step 1.8.13
Multiply by .
Step 1.8.14
Apply the product rule to .
Step 1.8.15
Raise to the power of .
Step 1.8.16
Multiply by .
Step 1.9
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.10
Simplify terms.
Step 1.10.1
Simplify each term.
Step 1.10.1.1
Multiply by .
Step 1.10.1.2
Rewrite using the commutative property of multiplication.
Step 1.10.1.3
Multiply by by adding the exponents.
Step 1.10.1.3.1
Move .
Step 1.10.1.3.2
Multiply by .
Step 1.10.1.3.2.1
Raise to the power of .
Step 1.10.1.3.2.2
Use the power rule to combine exponents.
Step 1.10.1.3.3
Add and .
Step 1.10.1.4
Multiply by .
Step 1.10.1.5
Rewrite using the commutative property of multiplication.
Step 1.10.1.6
Multiply by by adding the exponents.
Step 1.10.1.6.1
Move .
Step 1.10.1.6.2
Use the power rule to combine exponents.
Step 1.10.1.6.3
Add and .
Step 1.10.1.7
Multiply by .
Step 1.10.1.8
Rewrite using the commutative property of multiplication.
Step 1.10.1.9
Multiply by by adding the exponents.
Step 1.10.1.9.1
Move .
Step 1.10.1.9.2
Use the power rule to combine exponents.
Step 1.10.1.9.3
Add and .
Step 1.10.1.10
Multiply by .
Step 1.10.1.11
Multiply by by adding the exponents.
Step 1.10.1.11.1
Move .
Step 1.10.1.11.2
Use the power rule to combine exponents.
Step 1.10.1.11.3
Add and .
Step 1.10.1.12
Multiply by .
Step 1.10.1.13
Rewrite using the commutative property of multiplication.
Step 1.10.1.14
Multiply by by adding the exponents.
Step 1.10.1.14.1
Move .
Step 1.10.1.14.2
Multiply by .
Step 1.10.1.14.2.1
Raise to the power of .
Step 1.10.1.14.2.2
Use the power rule to combine exponents.
Step 1.10.1.14.3
Add and .
Step 1.10.1.15
Multiply by .
Step 1.10.1.16
Rewrite using the commutative property of multiplication.
Step 1.10.1.17
Multiply by by adding the exponents.
Step 1.10.1.17.1
Move .
Step 1.10.1.17.2
Use the power rule to combine exponents.
Step 1.10.1.17.3
Add and .
Step 1.10.1.18
Multiply by .
Step 1.10.1.19
Rewrite using the commutative property of multiplication.
Step 1.10.1.20
Multiply by by adding the exponents.
Step 1.10.1.20.1
Move .
Step 1.10.1.20.2
Use the power rule to combine exponents.
Step 1.10.1.20.3
Add and .
Step 1.10.1.21
Multiply by .
Step 1.10.1.22
Multiply by by adding the exponents.
Step 1.10.1.22.1
Move .
Step 1.10.1.22.2
Use the power rule to combine exponents.
Step 1.10.1.22.3
Add and .
Step 1.10.1.23
Multiply by .
Step 1.10.1.24
Rewrite using the commutative property of multiplication.
Step 1.10.1.25
Multiply by by adding the exponents.
Step 1.10.1.25.1
Move .
Step 1.10.1.25.2
Multiply by .
Step 1.10.1.25.2.1
Raise to the power of .
Step 1.10.1.25.2.2
Use the power rule to combine exponents.
Step 1.10.1.25.3
Add and .
Step 1.10.1.26
Multiply by .
Step 1.10.1.27
Rewrite using the commutative property of multiplication.
Step 1.10.1.28
Multiply by by adding the exponents.
Step 1.10.1.28.1
Move .
Step 1.10.1.28.2
Use the power rule to combine exponents.
Step 1.10.1.28.3
Add and .
Step 1.10.1.29
Multiply by .
Step 1.10.1.30
Rewrite using the commutative property of multiplication.
Step 1.10.1.31
Multiply by by adding the exponents.
Step 1.10.1.31.1
Move .
Step 1.10.1.31.2
Use the power rule to combine exponents.
Step 1.10.1.31.3
Add and .
Step 1.10.1.32
Multiply by .
Step 1.10.1.33
Multiply by by adding the exponents.
Step 1.10.1.33.1
Move .
Step 1.10.1.33.2
Use the power rule to combine exponents.
Step 1.10.1.33.3
Add and .
Step 1.10.2
Simplify by adding terms.
Step 1.10.2.1
Subtract from .
Step 1.10.2.2
Add and .
Step 1.10.2.3
Subtract from .
Step 1.10.2.4
Add and .
Step 1.10.2.5
Add and .
Step 1.10.2.6
Subtract from .
Step 1.10.2.7
Add and .
Step 1.10.2.8
Subtract from .
Step 1.10.2.9
Simplify the expression.
Step 1.10.2.9.1
Move .
Step 1.10.2.9.2
Move .
Step 1.10.2.9.3
Move .
Step 1.10.2.9.4
Reorder and .
Step 2
Step 2.1
Identify the exponents on the variables in each term, and add them together to find the degree of each term.
Step 2.2
The largest exponent is the degree of the polynomial.
Step 3
The leading term in a polynomial is the term with the highest degree.
Step 4
Step 4.1
The leading term in a polynomial is the term with the highest degree.
Step 4.2
The leading coefficient in a polynomial is the coefficient of the leading term.
Step 5
List the results.
Polynomial Degree:
Leading Term:
Leading Coefficient: