Enter a problem...
Algebra Examples
Step 1
Determine if the function is odd, even, or neither in order to find the symmetry.
1. If odd, the function is symmetric about the origin.
2. If even, the function is symmetric about the y-axis.
Step 2
Step 2.1
Find by substituting for all occurrence of in .
Step 2.2
Apply the product rule to .
Step 2.3
Multiply by by adding the exponents.
Step 2.3.1
Move .
Step 2.3.2
Multiply by .
Step 2.3.2.1
Raise to the power of .
Step 2.3.2.2
Use the power rule to combine exponents.
Step 2.3.3
Add and .
Step 2.4
Raise to the power of .
Step 3
Step 3.1
Check if .
Step 3.2
Since , the function is not even.
The function is not even
The function is not even
Step 4
Step 4.1
Remove parentheses.
Step 4.2
Since , the function is odd.
The function is odd
The function is odd
Step 5
Since the function is odd, it is symmetric about the origin.
Origin Symmetry
Step 6
Since the function is not even, it is not symmetric about the y-axis.
No y-axis symmetry
Step 7
Determine the symmetry of the function.
Origin symmetry
Step 8