Algebra Examples

Write in Standard Form -2y^2+x-4y+1=0
Step 1
Solve for .
Tap for more steps...
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Simplify the numerator.
Tap for more steps...
Step 1.3.1.1
Factor out of .
Tap for more steps...
Step 1.3.1.1.1
Factor out of .
Step 1.3.1.1.2
Factor out of .
Step 1.3.1.1.3
Factor out of .
Step 1.3.1.2
Factor out of .
Tap for more steps...
Step 1.3.1.2.1
Reorder and .
Step 1.3.1.2.2
Factor out of .
Step 1.3.1.2.3
Factor out of .
Step 1.3.1.3
Add and .
Step 1.3.1.4
Multiply by .
Step 1.3.1.5
Rewrite as .
Tap for more steps...
Step 1.3.1.5.1
Factor out of .
Step 1.3.1.5.2
Rewrite as .
Step 1.3.1.5.3
Add parentheses.
Step 1.3.1.6
Pull terms out from under the radical.
Step 1.3.2
Multiply by .
Step 1.3.3
Simplify .
Step 1.3.4
Move the negative in front of the fraction.
Step 1.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Factor out of .
Tap for more steps...
Step 1.4.1.1.1
Factor out of .
Step 1.4.1.1.2
Factor out of .
Step 1.4.1.1.3
Factor out of .
Step 1.4.1.2
Factor out of .
Tap for more steps...
Step 1.4.1.2.1
Reorder and .
Step 1.4.1.2.2
Factor out of .
Step 1.4.1.2.3
Factor out of .
Step 1.4.1.3
Add and .
Step 1.4.1.4
Multiply by .
Step 1.4.1.5
Rewrite as .
Tap for more steps...
Step 1.4.1.5.1
Factor out of .
Step 1.4.1.5.2
Rewrite as .
Step 1.4.1.5.3
Add parentheses.
Step 1.4.1.6
Pull terms out from under the radical.
Step 1.4.2
Multiply by .
Step 1.4.3
Simplify .
Step 1.4.4
Move the negative in front of the fraction.
Step 1.4.5
Change the to .
Step 1.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.5.1.1
Factor out of .
Tap for more steps...
Step 1.5.1.1.1
Factor out of .
Step 1.5.1.1.2
Factor out of .
Step 1.5.1.1.3
Factor out of .
Step 1.5.1.2
Factor out of .
Tap for more steps...
Step 1.5.1.2.1
Reorder and .
Step 1.5.1.2.2
Factor out of .
Step 1.5.1.2.3
Factor out of .
Step 1.5.1.3
Add and .
Step 1.5.1.4
Multiply by .
Step 1.5.1.5
Rewrite as .
Tap for more steps...
Step 1.5.1.5.1
Factor out of .
Step 1.5.1.5.2
Rewrite as .
Step 1.5.1.5.3
Add parentheses.
Step 1.5.1.6
Pull terms out from under the radical.
Step 1.5.2
Multiply by .
Step 1.5.3
Simplify .
Step 1.5.4
Move the negative in front of the fraction.
Step 1.5.5
Change the to .
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
Split the fraction into two fractions.
Step 4
Divide by .
Step 5
Apply the distributive property.
Step 6
Multiply by .
Step 7
Split the fraction into two fractions.
Step 8
Simplify each term.
Tap for more steps...
Step 8.1
Divide by .
Step 8.2
Move the negative in front of the fraction.
Step 9
Simplify by multiplying through.
Tap for more steps...
Step 9.1
Apply the distributive property.
Step 9.2
Multiply by .
Step 10
Reorder terms.
Step 11
Remove parentheses.
Step 12