Algebra Examples

Evaluate Using the Given Value (2x)^2-3y^2+4x=-1 y=2
Step 1
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.1
Replace all occurrences of in with .
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Simplify each term.
Tap for more steps...
Step 1.2.1.1
Apply the product rule to .
Step 1.2.1.2
Raise to the power of .
Step 1.2.1.3
Raise to the power of .
Step 1.2.1.4
Multiply by .
Step 2
Solve for in .
Tap for more steps...
Step 2.1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 2.1.1
Add to both sides of the equation.
Step 2.1.2
Add and .
Step 2.2
Use the quadratic formula to find the solutions.
Step 2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.4.1.1
Raise to the power of .
Step 2.4.1.2
Multiply .
Tap for more steps...
Step 2.4.1.2.1
Multiply by .
Step 2.4.1.2.2
Multiply by .
Step 2.4.1.3
Add and .
Step 2.4.1.4
Rewrite as .
Tap for more steps...
Step 2.4.1.4.1
Factor out of .
Step 2.4.1.4.2
Rewrite as .
Step 2.4.1.5
Pull terms out from under the radical.
Step 2.4.2
Multiply by .
Step 2.4.3
Simplify .
Step 2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.5.1.1
Raise to the power of .
Step 2.5.1.2
Multiply .
Tap for more steps...
Step 2.5.1.2.1
Multiply by .
Step 2.5.1.2.2
Multiply by .
Step 2.5.1.3
Add and .
Step 2.5.1.4
Rewrite as .
Tap for more steps...
Step 2.5.1.4.1
Factor out of .
Step 2.5.1.4.2
Rewrite as .
Step 2.5.1.5
Pull terms out from under the radical.
Step 2.5.2
Multiply by .
Step 2.5.3
Simplify .
Step 2.5.4
Change the to .
Step 2.5.5
Rewrite as .
Step 2.5.6
Factor out of .
Step 2.5.7
Factor out of .
Step 2.5.8
Move the negative in front of the fraction.
Step 2.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.6.1
Simplify the numerator.
Tap for more steps...
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Multiply .
Tap for more steps...
Step 2.6.1.2.1
Multiply by .
Step 2.6.1.2.2
Multiply by .
Step 2.6.1.3
Add and .
Step 2.6.1.4
Rewrite as .
Tap for more steps...
Step 2.6.1.4.1
Factor out of .
Step 2.6.1.4.2
Rewrite as .
Step 2.6.1.5
Pull terms out from under the radical.
Step 2.6.2
Multiply by .
Step 2.6.3
Simplify .
Step 2.6.4
Change the to .
Step 2.6.5
Rewrite as .
Step 2.6.6
Factor out of .
Step 2.6.7
Factor out of .
Step 2.6.8
Move the negative in front of the fraction.
Step 2.7
The final answer is the combination of both solutions.
Step 3
Solve the system of equations.
Step 4
Solve the system of equations.
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.