Enter a problem...
Algebra Examples
Step 1
Step 1.1
Factor out of .
Step 1.1.1
Factor out of .
Step 1.1.2
Factor out of .
Step 1.1.3
Factor out of .
Step 1.2
Factor using the AC method.
Step 1.2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2.2
Write the factored form using these integers.
Step 1.3
Reduce the expression by cancelling the common factors.
Step 1.3.1
Cancel the common factor.
Step 1.3.2
Rewrite the expression.
Step 1.4
Rewrite as .
Step 1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.5
The factor for is itself.
occurs time.
Step 2.6
The factor for is itself.
occurs time.
Step 2.7
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of .
Step 3.2.1.1.1
Cancel the common factor.
Step 3.2.1.1.2
Rewrite the expression.
Step 3.2.1.2
Apply the distributive property.
Step 3.2.1.3
Multiply by .
Step 3.2.1.4
Move to the left of .
Step 3.2.1.5
Cancel the common factor of .
Step 3.2.1.5.1
Cancel the common factor.
Step 3.2.1.5.2
Rewrite the expression.
Step 3.3
Simplify the right side.
Step 3.3.1
Expand using the FOIL Method.
Step 3.3.1.1
Apply the distributive property.
Step 3.3.1.2
Apply the distributive property.
Step 3.3.1.3
Apply the distributive property.
Step 3.3.2
Simplify terms.
Step 3.3.2.1
Combine the opposite terms in .
Step 3.3.2.1.1
Reorder the factors in the terms and .
Step 3.3.2.1.2
Add and .
Step 3.3.2.1.3
Add and .
Step 3.3.2.2
Simplify each term.
Step 3.3.2.2.1
Multiply by .
Step 3.3.2.2.2
Multiply by .
Step 3.3.2.3
Simplify by multiplying through.
Step 3.3.2.3.1
Apply the distributive property.
Step 3.3.2.3.2
Multiply by .
Step 4
Step 4.1
Move all terms containing to the left side of the equation.
Step 4.1.1
Add to both sides of the equation.
Step 4.1.2
Add and .
Step 4.2
Move all terms to the left side of the equation and simplify.
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Subtract from .
Step 4.3
Use the quadratic formula to find the solutions.
Step 4.4
Substitute the values , , and into the quadratic formula and solve for .
Step 4.5
Simplify.
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
Raise to the power of .
Step 4.5.1.2
Multiply .
Step 4.5.1.2.1
Multiply by .
Step 4.5.1.2.2
Multiply by .
Step 4.5.1.3
Add and .
Step 4.5.2
Multiply by .
Step 4.6
The final answer is the combination of both solutions.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: