Enter a problem...
Algebra Examples
Step 1
Step 1.1
Simplify and reorder the polynomial.
Step 1.1.1
Simplify terms.
Step 1.1.1.1
Apply the distributive property.
Step 1.1.1.2
Simplify the expression.
Step 1.1.1.2.1
Multiply by .
Step 1.1.1.2.2
Rewrite using the commutative property of multiplication.
Step 1.1.1.3
Simplify each term.
Step 1.1.1.3.1
Multiply by by adding the exponents.
Step 1.1.1.3.1.1
Move .
Step 1.1.1.3.1.2
Multiply by .
Step 1.1.1.3.1.2.1
Raise to the power of .
Step 1.1.1.3.1.2.2
Use the power rule to combine exponents.
Step 1.1.1.3.1.3
Add and .
Step 1.1.1.3.2
Multiply by .
Step 1.1.2
Use the Binomial Theorem.
Step 1.1.3
Simplify each term.
Step 1.1.3.1
Apply the product rule to .
Step 1.1.3.2
Raise to the power of .
Step 1.1.3.3
Apply the product rule to .
Step 1.1.3.4
Raise to the power of .
Step 1.1.3.5
Multiply by .
Step 1.1.3.6
Multiply by .
Step 1.1.3.7
Apply the product rule to .
Step 1.1.3.8
Raise to the power of .
Step 1.1.3.9
Multiply by .
Step 1.1.3.10
Raise to the power of .
Step 1.1.3.11
Multiply by .
Step 1.1.3.12
Multiply by .
Step 1.1.3.13
Raise to the power of .
Step 1.1.3.14
Multiply by .
Step 1.1.3.15
Raise to the power of .
Step 1.1.4
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.1.5
Simplify terms.
Step 1.1.5.1
Simplify each term.
Step 1.1.5.1.1
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.2
Multiply by by adding the exponents.
Step 1.1.5.1.2.1
Move .
Step 1.1.5.1.2.2
Use the power rule to combine exponents.
Step 1.1.5.1.2.3
Add and .
Step 1.1.5.1.3
Multiply by .
Step 1.1.5.1.4
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.5
Multiply by by adding the exponents.
Step 1.1.5.1.5.1
Move .
Step 1.1.5.1.5.2
Use the power rule to combine exponents.
Step 1.1.5.1.5.3
Add and .
Step 1.1.5.1.6
Multiply by .
Step 1.1.5.1.7
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.8
Multiply by by adding the exponents.
Step 1.1.5.1.8.1
Move .
Step 1.1.5.1.8.2
Use the power rule to combine exponents.
Step 1.1.5.1.8.3
Add and .
Step 1.1.5.1.9
Multiply by .
Step 1.1.5.1.10
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.11
Multiply by by adding the exponents.
Step 1.1.5.1.11.1
Move .
Step 1.1.5.1.11.2
Multiply by .
Step 1.1.5.1.11.2.1
Raise to the power of .
Step 1.1.5.1.11.2.2
Use the power rule to combine exponents.
Step 1.1.5.1.11.3
Add and .
Step 1.1.5.1.12
Multiply by .
Step 1.1.5.1.13
Multiply by .
Step 1.1.5.1.14
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.15
Multiply by by adding the exponents.
Step 1.1.5.1.15.1
Move .
Step 1.1.5.1.15.2
Use the power rule to combine exponents.
Step 1.1.5.1.15.3
Add and .
Step 1.1.5.1.16
Multiply by .
Step 1.1.5.1.17
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.18
Multiply by by adding the exponents.
Step 1.1.5.1.18.1
Move .
Step 1.1.5.1.18.2
Use the power rule to combine exponents.
Step 1.1.5.1.18.3
Add and .
Step 1.1.5.1.19
Multiply by .
Step 1.1.5.1.20
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.21
Multiply by by adding the exponents.
Step 1.1.5.1.21.1
Move .
Step 1.1.5.1.21.2
Use the power rule to combine exponents.
Step 1.1.5.1.21.3
Add and .
Step 1.1.5.1.22
Multiply by .
Step 1.1.5.1.23
Rewrite using the commutative property of multiplication.
Step 1.1.5.1.24
Multiply by by adding the exponents.
Step 1.1.5.1.24.1
Move .
Step 1.1.5.1.24.2
Multiply by .
Step 1.1.5.1.24.2.1
Raise to the power of .
Step 1.1.5.1.24.2.2
Use the power rule to combine exponents.
Step 1.1.5.1.24.3
Add and .
Step 1.1.5.1.25
Multiply by .
Step 1.1.5.1.26
Multiply by .
Step 1.1.5.2
Simplify by adding terms.
Step 1.1.5.2.1
Add and .
Step 1.1.5.2.2
Subtract from .
Step 1.1.5.2.3
Add and .
Step 1.1.5.2.4
Subtract from .
Step 1.2
The largest exponent is the degree of the polynomial.
Step 2
Since the degree is even, the ends of the function will point in the same direction.
Even
Step 3
Step 3.1
Simplify the polynomial, then reorder it left to right starting with the highest degree term.
Step 3.1.1
Simplify terms.
Step 3.1.1.1
Apply the distributive property.
Step 3.1.1.2
Simplify the expression.
Step 3.1.1.2.1
Multiply by .
Step 3.1.1.2.2
Rewrite using the commutative property of multiplication.
Step 3.1.1.3
Simplify each term.
Step 3.1.1.3.1
Multiply by by adding the exponents.
Step 3.1.1.3.1.1
Move .
Step 3.1.1.3.1.2
Multiply by .
Step 3.1.1.3.1.2.1
Raise to the power of .
Step 3.1.1.3.1.2.2
Use the power rule to combine exponents.
Step 3.1.1.3.1.3
Add and .
Step 3.1.1.3.2
Multiply by .
Step 3.1.2
Use the Binomial Theorem.
Step 3.1.3
Simplify each term.
Step 3.1.3.1
Apply the product rule to .
Step 3.1.3.2
Raise to the power of .
Step 3.1.3.3
Apply the product rule to .
Step 3.1.3.4
Raise to the power of .
Step 3.1.3.5
Multiply by .
Step 3.1.3.6
Multiply by .
Step 3.1.3.7
Apply the product rule to .
Step 3.1.3.8
Raise to the power of .
Step 3.1.3.9
Multiply by .
Step 3.1.3.10
Raise to the power of .
Step 3.1.3.11
Multiply by .
Step 3.1.3.12
Multiply by .
Step 3.1.3.13
Raise to the power of .
Step 3.1.3.14
Multiply by .
Step 3.1.3.15
Raise to the power of .
Step 3.1.4
Expand by multiplying each term in the first expression by each term in the second expression.
Step 3.1.5
Simplify terms.
Step 3.1.5.1
Simplify each term.
Step 3.1.5.1.1
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.2
Multiply by by adding the exponents.
Step 3.1.5.1.2.1
Move .
Step 3.1.5.1.2.2
Use the power rule to combine exponents.
Step 3.1.5.1.2.3
Add and .
Step 3.1.5.1.3
Multiply by .
Step 3.1.5.1.4
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.5
Multiply by by adding the exponents.
Step 3.1.5.1.5.1
Move .
Step 3.1.5.1.5.2
Use the power rule to combine exponents.
Step 3.1.5.1.5.3
Add and .
Step 3.1.5.1.6
Multiply by .
Step 3.1.5.1.7
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.8
Multiply by by adding the exponents.
Step 3.1.5.1.8.1
Move .
Step 3.1.5.1.8.2
Use the power rule to combine exponents.
Step 3.1.5.1.8.3
Add and .
Step 3.1.5.1.9
Multiply by .
Step 3.1.5.1.10
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.11
Multiply by by adding the exponents.
Step 3.1.5.1.11.1
Move .
Step 3.1.5.1.11.2
Multiply by .
Step 3.1.5.1.11.2.1
Raise to the power of .
Step 3.1.5.1.11.2.2
Use the power rule to combine exponents.
Step 3.1.5.1.11.3
Add and .
Step 3.1.5.1.12
Multiply by .
Step 3.1.5.1.13
Multiply by .
Step 3.1.5.1.14
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.15
Multiply by by adding the exponents.
Step 3.1.5.1.15.1
Move .
Step 3.1.5.1.15.2
Use the power rule to combine exponents.
Step 3.1.5.1.15.3
Add and .
Step 3.1.5.1.16
Multiply by .
Step 3.1.5.1.17
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.18
Multiply by by adding the exponents.
Step 3.1.5.1.18.1
Move .
Step 3.1.5.1.18.2
Use the power rule to combine exponents.
Step 3.1.5.1.18.3
Add and .
Step 3.1.5.1.19
Multiply by .
Step 3.1.5.1.20
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.21
Multiply by by adding the exponents.
Step 3.1.5.1.21.1
Move .
Step 3.1.5.1.21.2
Use the power rule to combine exponents.
Step 3.1.5.1.21.3
Add and .
Step 3.1.5.1.22
Multiply by .
Step 3.1.5.1.23
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.24
Multiply by by adding the exponents.
Step 3.1.5.1.24.1
Move .
Step 3.1.5.1.24.2
Multiply by .
Step 3.1.5.1.24.2.1
Raise to the power of .
Step 3.1.5.1.24.2.2
Use the power rule to combine exponents.
Step 3.1.5.1.24.3
Add and .
Step 3.1.5.1.25
Multiply by .
Step 3.1.5.1.26
Multiply by .
Step 3.1.5.2
Simplify by adding terms.
Step 3.1.5.2.1
Add and .
Step 3.1.5.2.2
Subtract from .
Step 3.1.5.2.3
Add and .
Step 3.1.5.2.4
Subtract from .
Step 3.1.5.2.5
Simplify the expression.
Step 3.1.5.2.5.1
Move .
Step 3.1.5.2.5.2
Move .
Step 3.1.5.2.5.3
Move .
Step 3.1.5.2.5.4
Move .
Step 3.1.5.2.5.5
Reorder and .
Step 3.2
The leading term in a polynomial is the term with the highest degree.
Step 3.3
The leading coefficient in a polynomial is the coefficient of the leading term.
Step 4
Since the leading coefficient is negative, the graph falls to the right.
Negative
Step 5
Use the degree of the function, as well as the sign of the leading coefficient to determine the behavior.
1. Even and Positive: Rises to the left and rises to the right.
2. Even and Negative: Falls to the left and falls to the right.
3. Odd and Positive: Falls to the left and rises to the right.
4. Odd and Negative: Rises to the left and falls to the right
Step 6
Determine the behavior.
Falls to the left and falls to the right
Step 7