Algebra Examples

Find the Remainder (x^4-6x^2-23)÷(x+2)
Step 1
To calculate the remainder, first divide the polynomials.
Tap for more steps...
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++-+-
Step 1.2
Divide the highest order term in the dividend by the highest order term in divisor .
++-+-
Step 1.3
Multiply the new quotient term by the divisor.
++-+-
++
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in
++-+-
--
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++-+-
--
-
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
++-+-
--
--
Step 1.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
++-+-
--
--
Step 1.8
Multiply the new quotient term by the divisor.
-
++-+-
--
--
--
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
++-+-
--
--
++
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
++-+-
--
--
++
-
Step 1.11
Pull the next terms from the original dividend down into the current dividend.
-
++-+-
--
--
++
-+
Step 1.12
Divide the highest order term in the dividend by the highest order term in divisor .
--
++-+-
--
--
++
-+
Step 1.13
Multiply the new quotient term by the divisor.
--
++-+-
--
--
++
-+
--
Step 1.14
The expression needs to be subtracted from the dividend, so change all the signs in
--
++-+-
--
--
++
-+
++
Step 1.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--
++-+-
--
--
++
-+
++
+
Step 1.16
Pull the next terms from the original dividend down into the current dividend.
--
++-+-
--
--
++
-+
++
+-
Step 1.17
Divide the highest order term in the dividend by the highest order term in divisor .
--+
++-+-
--
--
++
-+
++
+-
Step 1.18
Multiply the new quotient term by the divisor.
--+
++-+-
--
--
++
-+
++
+-
++
Step 1.19
The expression needs to be subtracted from the dividend, so change all the signs in
--+
++-+-
--
--
++
-+
++
+-
--
Step 1.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--+
++-+-
--
--
++
-+
++
+-
--
-
Step 1.21
The final answer is the quotient plus the remainder over the divisor.
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.