Enter a problem...
Algebra Examples
Step 1
Multiply both sides by .
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Cancel the common factor of .
Step 2.1.1.1
Cancel the common factor.
Step 2.1.1.2
Rewrite the expression.
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Multiply by .
Step 3
Step 3.1
Solve for .
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Factor out of .
Step 3.1.2.1
Factor out of .
Step 3.1.2.2
Factor out of .
Step 3.1.2.3
Factor out of .
Step 3.1.3
Divide each term in by and simplify.
Step 3.1.3.1
Divide each term in by .
Step 3.1.3.2
Simplify the left side.
Step 3.1.3.2.1
Cancel the common factor of .
Step 3.1.3.2.1.1
Cancel the common factor.
Step 3.1.3.2.1.2
Rewrite the expression.
Step 3.1.3.2.2
Cancel the common factor of .
Step 3.1.3.2.2.1
Cancel the common factor.
Step 3.1.3.2.2.2
Divide by .
Step 3.2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.3
Simplify each side of the equation.
Step 3.3.1
Use to rewrite as .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Multiply the exponents in .
Step 3.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.1.2
Cancel the common factor of .
Step 3.3.2.1.1.2.1
Cancel the common factor.
Step 3.3.2.1.1.2.2
Rewrite the expression.
Step 3.3.2.1.2
Simplify.
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Simplify .
Step 3.3.3.1.1
Use the power rule to distribute the exponent.
Step 3.3.3.1.1.1
Apply the product rule to .
Step 3.3.3.1.1.2
Apply the product rule to .
Step 3.3.3.1.1.3
Apply the product rule to .
Step 3.3.3.1.2
Raise to the power of .
Step 3.3.3.1.3
Raise to the power of .
Step 3.4
Solve for .
Step 3.4.1
Find the LCD of the terms in the equation.
Step 3.4.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.4.1.2
The LCM of one and any expression is the expression.
Step 3.4.2
Multiply each term in by to eliminate the fractions.
Step 3.4.2.1
Multiply each term in by .
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Rewrite using the commutative property of multiplication.
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Rewrite using the commutative property of multiplication.
Step 3.4.2.3.2
Cancel the common factor of .
Step 3.4.2.3.2.1
Factor out of .
Step 3.4.2.3.2.2
Cancel the common factor.
Step 3.4.2.3.2.3
Rewrite the expression.
Step 3.4.2.3.3
Cancel the common factor of .
Step 3.4.2.3.3.1
Cancel the common factor.
Step 3.4.2.3.3.2
Rewrite the expression.
Step 3.4.3
Solve the equation.
Step 3.4.3.1
Move all terms containing to the left side of the equation.
Step 3.4.3.1.1
Subtract from both sides of the equation.
Step 3.4.3.1.2
Simplify each term.
Step 3.4.3.1.2.1
Rewrite as .
Step 3.4.3.1.2.2
Expand using the FOIL Method.
Step 3.4.3.1.2.2.1
Apply the distributive property.
Step 3.4.3.1.2.2.2
Apply the distributive property.
Step 3.4.3.1.2.2.3
Apply the distributive property.
Step 3.4.3.1.2.3
Simplify and combine like terms.
Step 3.4.3.1.2.3.1
Simplify each term.
Step 3.4.3.1.2.3.1.1
Multiply by .
Step 3.4.3.1.2.3.1.2
Move to the left of .
Step 3.4.3.1.2.3.1.3
Multiply by .
Step 3.4.3.1.2.3.2
Subtract from .
Step 3.4.3.1.2.4
Apply the distributive property.
Step 3.4.3.1.2.5
Simplify.
Step 3.4.3.1.2.5.1
Multiply by by adding the exponents.
Step 3.4.3.1.2.5.1.1
Move .
Step 3.4.3.1.2.5.1.2
Multiply by .
Step 3.4.3.1.2.5.1.2.1
Raise to the power of .
Step 3.4.3.1.2.5.1.2.2
Use the power rule to combine exponents.
Step 3.4.3.1.2.5.1.3
Add and .
Step 3.4.3.1.2.5.2
Rewrite using the commutative property of multiplication.
Step 3.4.3.1.2.5.3
Multiply by .
Step 3.4.3.1.2.6
Simplify each term.
Step 3.4.3.1.2.6.1
Multiply by by adding the exponents.
Step 3.4.3.1.2.6.1.1
Move .
Step 3.4.3.1.2.6.1.2
Multiply by .
Step 3.4.3.1.2.6.2
Multiply by .
Step 3.4.3.1.3
Subtract from .
Step 3.4.3.2
Factor out of .
Step 3.4.3.2.1
Factor out of .
Step 3.4.3.2.2
Factor out of .
Step 3.4.3.2.3
Factor out of .
Step 3.4.3.2.4
Factor out of .
Step 3.4.3.2.5
Factor out of .
Step 3.4.3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.4.3.4
Set equal to .
Step 3.4.3.5
Set equal to and solve for .
Step 3.4.3.5.1
Set equal to .
Step 3.4.3.5.2
Solve for .
Step 3.4.3.5.2.1
Use the quadratic formula to find the solutions.
Step 3.4.3.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4.3.5.2.3
Simplify.
Step 3.4.3.5.2.3.1
Simplify the numerator.
Step 3.4.3.5.2.3.1.1
Raise to the power of .
Step 3.4.3.5.2.3.1.2
Multiply .
Step 3.4.3.5.2.3.1.2.1
Multiply by .
Step 3.4.3.5.2.3.1.2.2
Multiply by .
Step 3.4.3.5.2.3.1.3
Subtract from .
Step 3.4.3.5.2.3.1.4
Rewrite as .
Step 3.4.3.5.2.3.1.4.1
Factor out of .
Step 3.4.3.5.2.3.1.4.2
Rewrite as .
Step 3.4.3.5.2.3.1.5
Pull terms out from under the radical.
Step 3.4.3.5.2.3.2
Multiply by .
Step 3.4.3.5.2.4
The final answer is the combination of both solutions.
Step 3.4.3.6
The final solution is all the values that make true.
Step 4
Exclude the solutions that do not make true.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: